論文の概要: Vehicle Detection of Multi-source Remote Sensing Data Using Active
Fine-tuning Network
- arxiv url: http://arxiv.org/abs/2007.08494v1
- Date: Thu, 16 Jul 2020 17:46:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 23:33:34.207822
- Title: Vehicle Detection of Multi-source Remote Sensing Data Using Active
Fine-tuning Network
- Title(参考訳): アクティブファインチューニングネットワークを用いたマルチソースリモートセンシングデータの車両検出
- Authors: Xin Wu and Wei Li and Danfeng Hong and Jiaojiao Tian and Ran Tao and
Qian Du
- Abstract要約: 提案するMs-AFtフレームワークは,移動学習,セグメンテーション,アクティブな分類を,自動ラベリングと検出のための統合されたフレームワークに統合する。
提案したMs-AFtは、未ラベルのデータセットから車両のトレーニングセットを最初に生成するために、微調整ネットワークを使用している。
2つのオープンISPRSベンチマークデータセットで実施された大規模な実験結果は、車両検出のための提案されたMs-AFtの優位性と有効性を示している。
- 参考スコア(独自算出の注目度): 26.08837467340853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle detection in remote sensing images has attracted increasing interest
in recent years. However, its detection ability is limited due to lack of
well-annotated samples, especially in densely crowded scenes. Furthermore,
since a list of remotely sensed data sources is available, efficient
exploitation of useful information from multi-source data for better vehicle
detection is challenging. To solve the above issues, a multi-source active
fine-tuning vehicle detection (Ms-AFt) framework is proposed, which integrates
transfer learning, segmentation, and active classification into a unified
framework for auto-labeling and detection. The proposed Ms-AFt employs a
fine-tuning network to firstly generate a vehicle training set from an
unlabeled dataset. To cope with the diversity of vehicle categories, a
multi-source based segmentation branch is then designed to construct additional
candidate object sets. The separation of high quality vehicles is realized by a
designed attentive classifications network. Finally, all three branches are
combined to achieve vehicle detection. Extensive experimental results conducted
on two open ISPRS benchmark datasets, namely the Vaihingen village and Potsdam
city datasets, demonstrate the superiority and effectiveness of the proposed
Ms-AFt for vehicle detection. In addition, the generalization ability of Ms-AFt
in dense remote sensing scenes is further verified on stereo aerial imagery of
a large camping site.
- Abstract(参考訳): 近年,リモートセンシング画像における車両検出が注目されている。
しかし、特に密集したシーンでは、よく注釈されたサンプルが不足しているため、検出能力は限られている。
さらに、リモートセンシングされたデータソースのリストが利用可能であるため、車両検出を改善するために、マルチソースデータからの有用な情報の効率的な活用が困難である。
上記の課題を解決するために,移動学習,セグメンテーション,アクティブな分類を自動ラベル付けと検出のための統合フレームワークに統合したマルチソースアクティブ微調整車両検出(Ms-AFt)フレームワークを提案する。
提案するms-aftは、微調整ネットワークを用いて、ラベルなしデータセットから最初に車両トレーニングセットを生成する。
車両カテゴリの多様性に対処するため、複数ソースベースセグメンテーションブランチは、追加の候補オブジェクトセットを構築するように設計されている。
設計された注意分類ネットワークにより高品質車両の分離を実現する。
最後に、3つの枝を組み合わせて車両検出を行う。
2つのオープンisprsベンチマークデータセット(vaihingen villageとpotsdam city dataset)で行った広範な実験の結果は、提案するms-aftの車両検出における優位性と有効性を示している。
さらに,大規模キャンプ場のステレオ空中画像において,高密度リモートセンシングシーンにおけるMs-AFtの一般化能力について検証した。
関連論文リスト
- MSMA: Multi-agent Trajectory Prediction in Connected and Autonomous Vehicle Environment with Multi-source Data Integration [4.2371435508360085]
本研究では,コネクテッド・自律走行車(CAV)が中心的エージェントとなるシナリオに着目した。
我々の軌道予測タスクは、検出された周辺車両すべてを対象としている。
センサと通信技術の両方のマルチソースデータを効果的に統合するために,MSMAと呼ばれるディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-31T03:26:14Z) - A Large-Scale Car Parts (LSCP) Dataset for Lightweight Fine-Grained
Detection [0.23020018305241333]
本稿では,12種類の自動車部品を検出するため,84,162枚の画像からなる大規模できめ細かな自動車データセットを提案する。
手動アノテーションの負担を軽減するため,新しい半教師付き自動ラベリング手法を提案する。
また,ゼロショットラベリングにおけるグラウンディングDINOアプローチの限界についても検討する。
論文 参考訳(メタデータ) (2023-11-20T13:30:42Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
本研究は,カメラとライダー情報を用いた物体検出ネットワークに新たな改良を加えたものである。
同じ車両内の隣のカメラにまたがって物体を再識別する作業のために、追加のブランチが組み込まれている。
その結果,従来の非最大抑圧(NMS)技術よりも,この手法が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-09T15:16:35Z) - A Fine-Grained Vehicle Detection (FGVD) Dataset for Unconstrained Roads [29.09167268252761]
本研究では,自動車に搭載された移動カメラから捉えた,野生におけるファイングラインド車両検出データセットについて紹介する。
シーンイメージは5502枚あり、3レベル階層に整理された複数の車両の210個の細粒度ラベルがある。
以前の分類データセットには、さまざまな種類の車も含まれていたが、FGVDデータセットでは、二輪車、オートリックショー、トラックを分類するための新しいクラスラベルが導入されている。
論文 参考訳(メタデータ) (2022-12-30T06:50:15Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
高レベル特徴記述子に基づく2つの畳み込みニューラルネットワーク(CNN)は、重車両の盲点衝突を検出するために提案される。
盲点車両検出のための高次特徴抽出のための2つの事前学習ネットワークを統合するために,融合手法を提案する。
機能の融合により、より高速なR-CNNの性能が大幅に向上し、既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2022-08-17T11:10:37Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Object Detection and Tracking Algorithms for Vehicle Counting: A
Comparative Analysis [3.093890460224435]
著者は、さまざまな種類の車両を検出し、追跡するために、アートオブジェクトの検出と追跡アルゴリズムのいくつかの状態をデプロイする。
モデルの組み合わせを検証し、手動で数えた9時間以上の交通映像データと比較する。
その結果,CentralNet,Deep SORT,Deuterron2,Deep SORT,YOLOv4,Deep SORTの組み合わせは全車種で最高の総計数率を示した。
論文 参考訳(メタデータ) (2020-07-31T17:49:27Z) - Dense Scene Multiple Object Tracking with Box-Plane Matching [73.54369833671772]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要なタスクである。
密集したシーンにおけるMOT性能を改善するために,Box-Plane Matching (BPM)法を提案する。
3つのモジュールの有効性により、ACM MM Grand Challenge HiEve 2020において、私たちのチームはトラック1のリーダーボードで1位を獲得しました。
論文 参考訳(メタデータ) (2020-07-30T16:39:22Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
我々は,4つのパブリックな車両データセットを活用することで,大規模車両データセット(VabyNet)を構築することを提案する。
VehicleNetからより堅牢な視覚表現を学習するための、シンプルで効果的な2段階プログレッシブアプローチを設計する。
AICity Challengeのプライベートテストセットにおいて,最先端の精度86.07%mAPを実現した。
論文 参考訳(メタデータ) (2020-04-14T05:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。