論文の概要: Counterfactual Concealed Telecomputation
- arxiv url: http://arxiv.org/abs/2012.04948v4
- Date: Wed, 17 Mar 2021 05:21:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 08:18:08.124983
- Title: Counterfactual Concealed Telecomputation
- Title(参考訳): 擬似畳み込み遠隔計算
- Authors: Fakhar Zaman, Hyundong Shin, and Moe Z. Win
- Abstract要約: 分散ブラインド量子計算プロトコルを考案し、普遍的な2ビット制御ユニタリ演算を行う。
このプロトコルは一般的な入力状態に対して有効であり、シングルキュービットのユニタリテレポーテーションはCCTの特別な場合である。
AliceとBobの初期合成状態がベル型状態である場合、プロトコルは単純化された回路実装で決定的になる。
- 参考スコア(独自算出の注目度): 22.577469136318836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed computing is a fastest growing field -- enabling virtual
computing, parallel computing, and distributed storage. By exploiting the
counterfactual techniques, we devise a distributed blind quantum computation
protocol to perform a universal two-qubit controlled unitary operation for any
input state without using preshared entanglement and without exchanging
physical particles between remote parties. This distributed protocol allows Bob
to counterfactully apply an arbitrary unitary operator to Alice's qubit in
probabilistic fashion, without revealing the operator to her, using a control
qubit -- called the counterfactual concealed telecomputation (CCT). It is shown
that the protocol is valid for general input states and that single-qubit
unitary teleportation is a special case of CCT. The quantum circuit for CCT can
be implemented using the (chained) quantum Zeno gates and the protocol becomes
deterministic with simplified circuit implementation if the initial composite
state of Alice and Bob is a Bell-type state.
- Abstract(参考訳): 分散コンピューティングは急速に成長する分野であり、仮想コンピューティング、並列コンピューティング、分散ストレージを可能にしている。
提案手法を応用して分散ブラインド量子計算プロトコルを考案し,任意の入力状態に対して,事前の絡み合いを用いることなく,遠隔者間で物理粒子を交換することなく,普遍的な2ビット制御ユニタリ演算を行う。
この分散プロトコルにより、ボブは任意のユニタリ演算子をアリスのキュービットに確率論的に対数的に適用できるが、そのオペレーターを明かすことなく、制御キュービット -- cct (counterfactual hiddened telecomputation) と呼ばれる。
このプロトコルは一般的な入力状態に対して有効であり、シングルキュービットのユニタリテレポーテーションはCCTの特別な場合である。
CCT用量子回路は(鎖状)量子Zenoゲートを用いて実装でき、AliceとBobの初期合成状態がベル型状態である場合、プロトコルは単純化された回路実装で決定される。
関連論文リスト
- Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
単一電子電荷量子ビットの量子制御のための数値最適化多パルスフレームワークを提案する。
新規な制御方式は、キュービットを断熱的に操作すると同時に、高速で一般的な単一キュービット回転を行う能力も保持する。
論文 参考訳(メタデータ) (2023-03-08T19:00:02Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
非クリフォードゲートのこのオーバーヘッドを低減するためのプロトコルを導入する。
予備的な結果は、より広い距離で高品質な忠実さを示唆している。
論文 参考訳(メタデータ) (2022-11-18T06:03:10Z) - Reversing Unknown Qubit-Unitary Operation, Deterministically and Exactly [0.9208007322096532]
量子回路モデルにおける未知のユニタリ演算を変換するプロトコルの最も一般的なクラスを考える。
提案プロトコルでは、入力キュービット単位演算を4回呼び、逆演算を実現する。
可能なすべてのプロトコルを表す巨大な検索空間を削減できる手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T03:33:09Z) - Quantum cryptography with classical communication: parallel remote state
preparation for copy-protection, verification, and more [125.99533416395765]
多くの暗号プリミティブは双方向のプロトコルであり、一方のパーティであるBobは完全な量子計算能力を持ち、もう一方のパーティであるAliceはランダムなBB84状態を送信するためにのみ必要である。
我々は、Bob が LWE 問題を効率的に解くことができないと仮定して、Alice が完全に古典的なプロトコルにどのように変換できるかを示す。
これは、(古典)アリスと(量子)ボブの間の全ての通信は古典的であるが、両者が古典的であれば不可能な暗号プリミティブを使用することができることを意味する。
論文 参考訳(メタデータ) (2022-01-31T18:56:31Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
証明者と検証者の間の「相互作用」は、検証可能性と実装のギャップを埋めることができる。
イオントラップ量子コンピュータを用いた対話型量子アドバンストプロトコルの最初の実装を実演する。
論文 参考訳(メタデータ) (2021-12-09T19:00:00Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
効率的な分散コンピューティングは、リソース要求タスクを解決するためのスケーラブルな戦略を提供する。
量子リソースはこのタスクに適しており、古典的手法よりも優れた明確な戦略を提供する。
我々は,ベルのような不等式に,新たなコミュニケーション複雑性タスクのクラスを関連付けることができることを証明した。
論文 参考訳(メタデータ) (2021-06-11T18:00:09Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
マルチパーティ量子計算(MPQC)は、量子ネットワークのキラーアプリケーションとして多くの注目を集めている。
単一の正直なクライアントであっても、盲目性と妥当性を達成できる構成可能なプロトコルを提案する。
論文 参考訳(メタデータ) (2021-02-25T15:58:09Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
古典的アリス(Alice)と量子的ボブ(Quantum Bob)が古典的なチャネルを通してのみ通信できるような設定を考える。
悪質な量子逆数の場合,ブラックボックスシミュレーションを用いた2次元量子関数を実現することは,一般に不可能であることを示す。
我々は、QMA関係Rの古典的量子知識(PoQK)プロトコルを入力として、古典的当事者によって検証可能なRのゼロ知識PoQKを出力するコンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-15T17:55:31Z) - Trusted center verification model and classical channel remote state
preparation [0.0]
古典的なチャネル遠隔状態準備(ccRSP)は量子暗号において重要な2要素プリミティブである。
我々は、検証者または信頼できるセンターがまず量子状態を証明者に送信し、次に証明者と検証者が古典的メッセージの一定ラウンドを交換する一般的な検証プロトコルを考える。
我々は,BQP が AM に含まれない限り,情報理論の健全性を維持しながら,最初の量子メッセージ送信を (近似した) ccRSP プロトコルに置き換えることができないことを示す。
論文 参考訳(メタデータ) (2020-08-11T23:16:04Z) - Exchange-Free Computation on an Unknown Qubit at a Distance [0.0]
粒子を交換することなく、任意の量子ビットを直接操作する方法を提案する。
これは、リモート古典的ボブによるアリスにおける任意の量子状態の交換自由な準備を含む。
ユニバーサル2量子ゲートの交換自由制御にこれを使う方法を示す。
論文 参考訳(メタデータ) (2020-08-03T12:42:00Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
連続変数を持つ普遍量子コンピューティングは非ガウス的資源を必要とする。
立方相状態は非ガウス状態であり、実験的な実装はいまだ解明されていない。
非ガウス状態から立方相状態への変換を可能にする2つのプロトコルを導入する。
論文 参考訳(メタデータ) (2020-07-07T09:19:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。