Federated Learning in Unreliable and Resource-Constrained Cellular
Wireless Networks
- URL: http://arxiv.org/abs/2012.05137v1
- Date: Wed, 9 Dec 2020 16:16:43 GMT
- Title: Federated Learning in Unreliable and Resource-Constrained Cellular
Wireless Networks
- Authors: Mohammad Salehi and Ekram Hossain
- Abstract summary: We propose a federated learning algorithm that is suitable for cellular wireless networks.
We prove its convergence, and provide the optimal scheduling policy that maximizes the convergence rate.
- Score: 35.80470886180477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With growth in the number of smart devices and advancements in their
hardware, in recent years, data-driven machine learning techniques have drawn
significant attention. However, due to privacy and communication issues, it is
not possible to collect this data at a centralized location. Federated learning
is a machine learning setting where the centralized location trains a learning
model over remote devices. Federated learning algorithms cannot be employed in
the real world scenarios unless they consider unreliable and
resource-constrained nature of the wireless medium. In this paper, we propose a
federated learning algorithm that is suitable for cellular wireless networks.
We prove its convergence, and provide the optimal scheduling policy that
maximizes the convergence rate. We also study the effect of local computation
steps and communication steps on the convergence of the proposed algorithm. We
prove, in practice, federated learning algorithms may solve a different problem
than the one that they have been employed for if the unreliability of wireless
channels is neglected. Finally, through numerous experiments on real and
synthetic datasets, we demonstrate the convergence of our proposed algorithm.
Related papers
- Rendering Wireless Environments Useful for Gradient Estimators: A Zero-Order Stochastic Federated Learning Method [14.986031916712108]
Cross-device federated learning (FL) is a growing machine learning framework whereby multiple edge devices collaborate to train a model without disclosing their raw data.
We show how to harness the wireless channel in the learning algorithm itself instead of to analyze it remove its impact.
arXiv Detail & Related papers (2024-01-30T21:46:09Z) - Coordination-free Decentralised Federated Learning on Complex Networks:
Overcoming Heterogeneity [2.6849848612544]
Federated Learning (FL) is a framework for performing a learning task in an edge computing scenario.
We propose a communication-efficient Decentralised Federated Learning (DFL) algorithm able to cope with them.
Our solution allows devices communicating only with their direct neighbours to train an accurate model.
arXiv Detail & Related papers (2023-12-07T18:24:19Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization [26.559267845906746]
Time learning (FL) is a useful tool in distributed machine learning that utilizes users' local datasets in a privacy-preserving manner.
In this paper, we provide a novel convergence analysis non-efficient convergence bound algorithm.
We also develop a new selection and power allocation algorithm that minimizes a function of the convergence bound and the average communication under a power constraint.
arXiv Detail & Related papers (2022-01-19T23:25:24Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
We will mainly focus on collaborative training across wireless devices.
Many distributed optimization algorithms have been developed over the last decades.
They provide data locality; that is, a joint model can be trained collaboratively while the data available at each participating device remains local.
arXiv Detail & Related papers (2021-12-07T20:15:39Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Learning Centric Wireless Resource Allocation for Edge Computing:
Algorithm and Experiment [15.577056429740951]
Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications.
Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment.
This paper proposes the learning centric wireless resource allocation scheme that maximizes the worst learning performance of multiple tasks.
arXiv Detail & Related papers (2020-10-29T06:20:40Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
Edge intelligence has been proposed, which collects distributed data and performs machine learning at the edge.
This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model.
Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.
arXiv Detail & Related papers (2020-07-21T07:02:07Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.