Quantum Discrimination of Two Noisy Displaced Number States
- URL: http://arxiv.org/abs/2012.05165v1
- Date: Wed, 9 Dec 2020 16:56:16 GMT
- Title: Quantum Discrimination of Two Noisy Displaced Number States
- Authors: Renzhi Yuan and Julian Cheng
- Abstract summary: We first consider the quantum discrimination of two noiseless displaced number states.
We then address the problem of discriminating between two noisy displaced number states.
- Score: 68.2727599930504
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The quantum discrimination of two non-coherent states draws much attention
recently. In this letter, we first consider the quantum discrimination of two
noiseless displaced number states. Then we derive the Fock representation of
noisy displaced number states and address the problem of discriminating between
two noisy displaced number states. We further prove that the optimal quantum
discrimination of two noisy displaced number states can be achieved by the
Kennedy receiver with threshold detection. Simulation results verify the
theoretical derivations and show that the error probability of on-off keying
modulation using a displaced number state is significantly less than that of
on-off keying modulation using a coherent state with the same average energy.
Related papers
- Quantum enhancement of spoofing detection with squeezed states of light [0.18377902806196764]
We show that quantum enhancement is independent of the number of photons.
We consider encoding squeezed states in the signal and show that the detection probability approaches unity if the spoofer capability is limited to coherent state generation.
arXiv Detail & Related papers (2024-06-20T21:43:56Z) - Teleportation of a qubit using exotic entangled coherent states [0.0]
We study the exotic Landau problem at the classical level where two conserved quantities are derived.
We form entangled coherent states which are Bell-like states labeled quasi-Bell states.
The effect of non-maximality of a quasi-Bell state based quantum channel is investigated in the context of a teleportation of a qubit.
arXiv Detail & Related papers (2024-04-03T12:03:38Z) - Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators [6.445506003176312]
Two-mode squeezed states are entangled states with bipartite quantum correlations in continuous-variable systems.
We experimentally demonstrate two-mode squeezed states by employing atoms in a two-dimensional optical lattice as quantum registers.
arXiv Detail & Related papers (2023-11-09T07:13:07Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - An agnostic-Dolinar receiver for coherent states classification [2.6763498831034034]
We consider the problem of discriminating quantum states, where the task is to distinguish two different quantum states with a complete classical knowledge about them.
In the case the quantum states are represented by coherent states of light, we identify intermediate scenarios where partial prior information is available.
arXiv Detail & Related papers (2021-06-22T16:35:42Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Discrimination of Ohmic thermal baths by quantum dephasing probes [68.8204255655161]
We evaluate the minimum error probability achievable by three different kinds of quantum probes, namely a qubit, a qutrit and a quantum register made of two qubits.
A qutrit probe outperforms a qubit one in the discrimination task, whereas a register made of two qubits does not offer any advantage.
arXiv Detail & Related papers (2020-08-06T08:51:51Z) - Unambiguous quantum state elimination for qubit sequences [0.0]
We consider quantum state elimination for two or more qubits, where each qubit can be in one of two possible states.
We prove that if we want to maximise the average number of eliminated overall N-qubit states, then individual measurements on each qubit are optimal.
arXiv Detail & Related papers (2020-03-03T21:18:45Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.