Towards a Probabilistic Foundation of Relativistic Quantum Theory: The One-Body Born Rule in Curved Spacetime
- URL: http://arxiv.org/abs/2012.05212v6
- Date: Wed, 3 Apr 2024 15:17:09 GMT
- Title: Towards a Probabilistic Foundation of Relativistic Quantum Theory: The One-Body Born Rule in Curved Spacetime
- Authors: Maik Reddiger, Bill Poirier,
- Abstract summary: This work is based on generalizing the quantum-mechanical Born rule for determining particle position probabilities to curved spacetime.
A principal motivator for this research has been to overcome internal mathematical problems of quantum field theory.
The main contribution of this work to the mathematical physics literature is the development of the Lagrangian picture.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we establish a novel approach to the foundations of relativistic quantum theory, which is based on generalizing the quantum-mechanical Born rule for determining particle position probabilities to curved spacetime. A principal motivator for this research has been to overcome internal mathematical problems of quantum field theory (QFT) such as the `problem of infinities' (renormalization), which axiomatic approaches to QFT have shown to be not only of mathematical but also of conceptual nature. The approach presented here is probabilistic by construction, can accommodate a wide array of dynamical models, does not rely on the symmetries of Minkowski spacetime, and respects the general principle of relativity. In the analytical part of this work we consider the $1$-body case under the assumption of smoothness of the mathematical quantities involved. This is identified as a special case of the theory of the general-relativistic continuity equation. While related approaches to the relativistic generalization of the Born rule assume the hypersurfaces of interest to be spacelike and the spacetime to be globally hyperbolic, we employ prior contributions by C. Eckart and J. Ehlers to show that the former condition is naturally replaced by a transversality condition and that the latter one is obsolete. We discuss two distinct formulations of the $1$-body case, which, borrowing terminology from the non-relativistic analog, we term the Lagrangian and Eulerian pictures. We provide a comprehensive treatment of both. The main contribution of this work to the mathematical physics literature is the development of the Lagrangian picture. The Langrangian picture shows how one can address the `problem of time' in this approach and therefore serves as a blueprint for the generalization to many bodies and the case that the number of bodies is not conserved (example given for the latter).
Related papers
- Phase time and Ehrenfest's theorem in relativistic quantum mechanics and quantum gravity [0.0]
We show how the geometry of configuration space together with the phase of the wave function of the universe can lead to the definition of a positive-definite inner product.
We obtain a version of Ehrenfest's theorem that is analogous to the one in ordinary quantum mechanics.
arXiv Detail & Related papers (2024-08-16T18:00:32Z) - On the applicability of Kolmogorov's theory of probability to the description of quantum phenomena. Part I [0.0]
I show that it is possible to construct a mathematically rigorous theory based on Kolmogorov's axioms and physically natural random variables.
The approach can in principle be adapted to other classes of quantum-mechanical models.
arXiv Detail & Related papers (2024-05-09T12:11:28Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - Revisiting Quantum Contextuality in an Algebraic Framework [0.0]
We discuss the ideas of extracontextuality and extravalence, that allow one to relate Kochen-Specker's and Gleason's theorems.
Our extracontextual approach requires however a way to describe the Heisenberg cut''
arXiv Detail & Related papers (2023-04-16T12:06:44Z) - Contextual unification of classical and quantum physics [0.0]
We develop the idea that the usual formalism of quantum mechanics stops working when countable infinities of particles are encountered.
This is because the dimension of the corresponding Hilbert space becomes uncountably infinite, leading to the loss of unitary equivalence.
We show that it provides a natural way to describe the "Heisenberg cut", as well as a unified mathematical model including both quantum and classical physics.
arXiv Detail & Related papers (2022-09-03T16:51:19Z) - Quantum Origin of (Newtonian) Mass and Galilean Relativity Symmetry [0.0]
The Galilei group has been taken as the fundamental symmetry for 'nonrelativistic' physics, quantum or classical.
We present a sketch of the full picture here, emphasizing aspects that are different from the more familiar picture.
arXiv Detail & Related papers (2022-07-15T03:03:21Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.