Machine Learning in Magnetic Resonance Imaging: Image Reconstruction
- URL: http://arxiv.org/abs/2012.05303v1
- Date: Wed, 9 Dec 2020 20:38:20 GMT
- Title: Machine Learning in Magnetic Resonance Imaging: Image Reconstruction
- Authors: Javier Montalt-Tordera, Vivek Muthurangu, Andreas Hauptmann, Jennifer
Anne Steeden
- Abstract summary: There has been an explosion in the use of machine learning in the field of MRI image reconstruction.
We summarize the current machine learning approaches used in MRI reconstruction, discuss their drawbacks, clinical applications, and current trends.
- Score: 1.6822770693792823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) plays a vital role in diagnosis, management
and monitoring of many diseases. However, it is an inherently slow imaging
technique. Over the last 20 years, parallel imaging, temporal encoding and
compressed sensing have enabled substantial speed-ups in the acquisition of MRI
data, by accurately recovering missing lines of k-space data. However, clinical
uptake of vastly accelerated acquisitions has been limited, in particular in
compressed sensing, due to the time-consuming nature of the reconstructions and
unnatural looking images. Following the success of machine learning in a wide
range of imaging tasks, there has been a recent explosion in the use of machine
learning in the field of MRI image reconstruction. A wide range of approaches
have been proposed, which can be applied in k-space and/or image-space.
Promising results have been demonstrated from a range of methods, enabling
natural looking images and rapid computation. In this review article we
summarize the current machine learning approaches used in MRI reconstruction,
discuss their drawbacks, clinical applications, and current trends.
Related papers
- Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction [5.910509015352437]
Fast MRI reconstruction aims to restore high-quality images from the undersampled k-space.
Existing methods typically train deep learning models to map the undersampled data to artifact-free MRI images.
We propose a continuous k-space recovery network from a new perspective of implicit neural representation with image domain guidance.
arXiv Detail & Related papers (2024-11-18T04:54:04Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Multi PILOT: Learned Feasible Multiple Acquisition Trajectories for
Dynamic MRI [0.7843343739054056]
In this study, we consider acquisition learning in the dynamic imaging setting.
We design an end-to-end pipeline for the joint optimization of multiple per-frame acquisition trajectories.
We demonstrate improved image reconstruction quality in shorter acquisition times.
arXiv Detail & Related papers (2023-03-13T14:23:39Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance
Imaging -- Mini Review, Comparison and Perspectives [5.3148259096171175]
One drawback of MRI is its comparatively slow scanning and reconstruction compared to other image modalities.
Deep Neural Networks (DNNs) have been used in sparse MRI reconstruction models to recreate relatively high-quality images.
Generative Adversarial Networks (GAN) based methods are proposed to solve fast MRI with enhanced image perceptual quality.
arXiv Detail & Related papers (2021-05-04T23:59:00Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
We propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition.
Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images.
Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data.
arXiv Detail & Related papers (2020-01-13T19:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.