論文の概要: Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images
- arxiv url: http://arxiv.org/abs/2012.05447v2
- Date: Thu, 17 Dec 2020 08:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-15 23:10:10.415868
- Title: Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images
- Title(参考訳): 胸部X線画像から解釈可能な肺癌スコーリングモデルの自動生成
- Authors: Michael J. Horry, Subrata Chakraborty, Biswajeet Pradhan, Manoranjan
Paul, Douglas P. S. Gomes, Anwaar Ul-Haq
- Abstract要約: 肺がんは世界中でがんの死因となっている。
深層学習技術は肺がんの診断に有効である。
これらの技術は、まだ医療コミュニティによって承認され、採用されていない。
- 参考スコア(独自算出の注目度): 9.525711971667679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung cancer is the leading cause of cancer death worldwide with early
detection being the key to a positive patient prognosis. Although a multitude
of studies have demonstrated that machine learning, and particularly deep
learning, techniques are effective at automatically diagnosing lung cancer,
these techniques have yet to be clinically approved and adopted by the medical
community. Most research in this field is focused on the narrow task of nodule
detection to provide an artificial radiological second reading. We instead
focus on extracting, from chest X-ray images, a wider range of pathologies
associated with lung cancer using a computer vision model trained on a large
dataset. We then find the set of best fit decision trees against an
independent, smaller dataset for which lung cancer malignancy metadata is
provided. For this small inferencing dataset, our best model achieves
sensitivity and specificity of 85% and 75% respectively with a positive
predictive value of 85% which is comparable to the performance of human
radiologists. Furthermore, the decision trees created by this method may be
considered as a starting point for refinement by medical experts into
clinically usable multi-variate lung cancer scoring and diagnostic models.
- Abstract(参考訳): 肺癌は、がんが世界中で最も多い死因であり、早期発見が患者の予後の鍵である。
多くの研究が、機械学習、特に深層学習は、肺がんの自動診断に有効であることを実証しているが、これらの技術は、まだ臨床で承認され、医療コミュニティによって採用されていない。
この分野のほとんどの研究は、人工放射線学的第二読取を提供するための結節検出の狭いタスクに焦点を当てている。
代わりに,胸部X線画像から肺がんに関連する幅広い病態を,大規模なデータセットで訓練されたコンピュータビジョンモデルを用いて抽出することに焦点を当てた。
次に、肺癌の悪性度メタデータを提供する独立した、より小さなデータセットに対する最適な意思決定ツリーのセットを見つける。
この小さな推論データセットでは, 感度と特異度はそれぞれ85%, 75%であり, 正の予測値は85%であり, 人体放射線技師の性能に匹敵する。
さらに、本手法により作成された決定木は、臨床応用可能な多変量肺癌スコアリングおよび診断モデルへの医療専門家による改良の出発点とみなすことができる。
関連論文リスト
- Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - Leveraging object detection for the identification of lung cancer [0.15229257192293202]
YOLOv5モデルは、がん性肺病変を検出するアルゴリズムの訓練に使用された。
訓練されたYOLOv5モデルは、肺癌の病変を同定し、高い精度とリコール率を示した。
論文 参考訳(メタデータ) (2023-05-25T07:53:18Z) - Artificial intelligence based prediction on lung cancer risk factors
using deep learning [0.0]
早期の症状の捕捉と定義は、患者にとって最も難しい段階の1つである。
深層学習手法を用いて,肺がんを極めて高い精度で検出できるモデルを開発した。
その結果, 精度は94%, 最小損失は0.1%であった。
論文 参考訳(メタデータ) (2023-04-11T08:57:15Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
肺癌早期検診では胸部X線像の肺結節検出が一般的である。
ディープラーニングに基づくコンピュータ支援診断(CAD)システムは、CXRの結節スクリーニングのために放射線科医をサポートすることができる。
このようなデータセットの可用性を損なうため,データ拡張のために肺結節合成法を提案する。
論文 参考訳(メタデータ) (2022-07-19T16:38:48Z) - Machine Learning-based Lung and Colon Cancer Detection using Deep
Feature Extraction and Ensemble Learning [0.9786690381850355]
肺がんと大腸癌を効率よく同定するためのハイブリッドアンサンブル特徴抽出モデルを提案する。
深い特徴抽出とアンサンブル学習と、がん画像データセットのための高性能なフィルタリングを統合している。
本モデルでは, 99.05%, 100%, 99.30%の精度で, 肺癌, 大腸癌, 結腸癌を検出できる。
論文 参考訳(メタデータ) (2022-06-02T15:14:41Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
肺がんは世界中でがん死の主要な原因であり、予後は早期診断に依存している。
胸部X線像を均質化し,除染する画像前処理パイプラインは,内部分類と外部一般化の両方を改善することができることを示す。
進化的プルーニング機構は、一般に利用可能な肺結節X線データセットから最も情報性の高い画像に基づいて結節検出深層学習モデルを訓練するために用いられる。
論文 参考訳(メタデータ) (2022-01-24T10:08:07Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
本稿では,診断パイプラインにおける基礎的,しかし困難な課題である肺分節に対する新しい深層学習手法を提案する。
本手法では, 逆批判モデルとともに, 最先端の完全畳み込みニューラルネットワークを用いる。
これは、患者プロファイルの異なる未確認データセットのCXRイメージによく当てはまり、JSRTデータセットの最終的なDSCRは97.5%に達した。
論文 参考訳(メタデータ) (2020-03-23T14:45:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。