論文の概要: Hybrid deep convolution model for lung cancer detection with transfer learning
- arxiv url: http://arxiv.org/abs/2501.02785v1
- Date: Mon, 06 Jan 2025 06:01:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:53.658989
- Title: Hybrid deep convolution model for lung cancer detection with transfer learning
- Title(参考訳): トランスファーラーニングを用いた肺がん検出のためのハイブリッドディープ畳み込みモデル
- Authors: Sugandha Saxena, S. N. Prasad, Ashwin M Polnaya, Shweta Agarwala,
- Abstract要約: 肺がんは、世界中でがん関連死亡の原因の1つとなっている。
我々は,MSNN(Maximum Sensitivity Neural Network)と呼ばれる伝達学習を利用したハイブリッド深層畳み込みモデルを提案する。
MSNNは、感度と特異性を改善することにより、肺がん検出の精度を向上させるように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Advances in healthcare research have significantly enhanced our understanding of disease mechanisms, diagnostic precision, and therapeutic options. Yet, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to challenges in early and accurate diagnosis. While current lung cancer detection models show promise, there is considerable potential for further improving the accuracy for timely intervention. To address this challenge, we introduce a hybrid deep convolution model leveraging transfer learning, named the Maximum Sensitivity Neural Network (MSNN). MSNN is designed to improve the precision of lung cancer detection by refining sensitivity and specificity. This model has surpassed existing deep learning approaches through experimental validation, achieving an accuracy of 98% and a sensitivity of 97%. By overlaying sensitivity maps onto lung Computed Tomography (CT) scans, it enables the visualization of regions most indicative of malignant or benign classifications. This innovative method demonstrates exceptional performance in distinguishing lung cancer with minimal false positives, thereby enhancing the accuracy of medical diagnoses.
- Abstract(参考訳): 医療研究の進歩により、疾患のメカニズム、診断精度、治療オプションの理解が大幅に向上した。
しかし、早期かつ正確な診断の難しさから、肺がんは世界中でがん関連死亡の原因の1つとなっている。
現在の肺がん検出モデルは将来性を示すが、時間的介入の精度をさらに向上させる可能性がある。
この課題に対処するために,最大感度ニューラルネットワーク (MSNN) と呼ばれる伝達学習を利用したハイブリッド深層畳み込みモデルを提案する。
MSNNは、感度と特異性を改善することにより、肺がん検出の精度を向上させるように設計されている。
このモデルは、実験的な検証を通じて既存のディープラーニングアプローチを超え、98%の精度と97%の感度を実現している。
肺CT(CT)スキャンに感度マップをオーバーレイすることで、悪性または良性分類の最も多い領域を可視化することができる。
本手法は, 肺がんを最小限の偽陽性で鑑別し, 診断精度を高めた。
関連論文リスト
- Medical AI for Early Detection of Lung Cancer: A Survey [11.90341994990241]
肺がんは世界中で致死率と死亡率の主要な原因の1つである。
コンピュータ支援診断システム(CAD)は肺結節の検出と分類に有効であることが証明されている。
深層学習アルゴリズムは肺結節解析の精度と効率を大幅に改善した。
論文 参考訳(メタデータ) (2024-10-18T17:45:42Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Leveraging object detection for the identification of lung cancer [0.15229257192293202]
YOLOv5モデルは、がん性肺病変を検出するアルゴリズムの訓練に使用された。
訓練されたYOLOv5モデルは、肺癌の病変を同定し、高い精度とリコール率を示した。
論文 参考訳(メタデータ) (2023-05-25T07:53:18Z) - Artificial intelligence based prediction on lung cancer risk factors
using deep learning [0.0]
早期の症状の捕捉と定義は、患者にとって最も難しい段階の1つである。
深層学習手法を用いて,肺がんを極めて高い精度で検出できるモデルを開発した。
その結果, 精度は94%, 最小損失は0.1%であった。
論文 参考訳(メタデータ) (2023-04-11T08:57:15Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images [9.525711971667679]
肺がんは世界中でがんの死因となっている。
深層学習技術は肺がんの診断に有効である。
これらの技術は、まだ医療コミュニティによって承認され、採用されていない。
論文 参考訳(メタデータ) (2020-12-10T04:11:59Z) - 3D Neural Network for Lung Cancer Risk Prediction on CT Volumes [0.6810862244331126]
肺がんはアメリカ合衆国で最も多いがん死の原因である。
肺がんCT検査は、死亡率を40%まで下げることが示されている。
放射線診断の基準が採用されているにもかかわらず, 経年変化が持続的であり, 包括的画像所見の不完全な特徴が現在の方法の限界として残っている。
本稿では,肺がんリスク予測のための最先端ディープラーニングアルゴリズムを再現する。
論文 参考訳(メタデータ) (2020-07-25T10:01:22Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
肺炎は小児の主要な死因であり、世界でも最多死亡率の1つである。
コンピュータ支援診断システムは診断精度を向上させる可能性を示した。
本研究では, 単発検出, 圧縮励起深部畳み込みニューラルネットワーク, 拡張, マルチタスク学習に基づく肺炎領域検出のための計算手法を開発した。
論文 参考訳(メタデータ) (2020-05-28T10:54:34Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。