論文の概要: An Asynchronous Kalman Filter for Hybrid Event Cameras
- arxiv url: http://arxiv.org/abs/2012.05590v2
- Date: Mon, 12 Apr 2021 08:32:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-15 06:12:52.996071
- Title: An Asynchronous Kalman Filter for Hybrid Event Cameras
- Title(参考訳): ハイブリッドイベントカメラのための非同期カルマンフィルタ
- Authors: Ziwei Wang, Yonhon Ng, Cedric Scheerlinck, Robert Mahony
- Abstract要約: イベントカメラはhdrの視覚情報をぼやけることなく捉えるのに理想的だ。
従来のイメージセンサーは、ゆっくりと変化するシーンの絶対強度を効果的に測定するが、高いダイナミックレンジや素早く変化するシーンでは不十分である。
本稿では,ハイダイナミックレンジシナリオのためのイベントベースビデオ再構成パイプラインを提案する。
- 参考スコア(独自算出の注目度): 13.600773150848543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras are ideally suited to capture HDR visual information without
blur but perform poorly on static or slowly changing scenes. Conversely,
conventional image sensors measure absolute intensity of slowly changing scenes
effectively but do poorly on high dynamic range or quickly changing scenes. In
this paper, we present an event-based video reconstruction pipeline for High
Dynamic Range (HDR) scenarios. The proposed algorithm includes a frame
augmentation pre-processing step that deblurs and temporally interpolates frame
data using events. The augmented frame and event data are then fused using a
novel asynchronous Kalman filter under a unifying uncertainty model for both
sensors. Our experimental results are evaluated on both publicly available
datasets with challenging lighting conditions and fast motions and our new
dataset with HDR reference. The proposed algorithm outperforms state-of-the-art
methods in both absolute intensity error (48% reduction) and image similarity
indexes (average 11% improvement).
- Abstract(参考訳): イベントカメラは、ぼやけずにHDRの視覚情報をキャプチャするのに理想的だが、静的またはゆっくりと変化するシーンでは性能が良くない。
逆に、従来の画像センサは、ゆっくりと変化するシーンの絶対強度を効果的に測定するが、高いダイナミックレンジや素早く変化するシーンでは不十分である。
本稿では,ハイダイナミックレンジ(hdr)シナリオのためのイベントベースの映像再構成パイプラインを提案する。
提案アルゴリズムは,時間的にフレームデータをイベントで補間するフレーム拡張前処理ステップを含む。
拡張フレームとイベントデータは、両センサの統一不確実性モデルの下で、新しい非同期カルマンフィルタを用いて融合される。
実験結果は、照明条件や高速動作に挑戦する公開データセットと、HDR参照による新しいデータセットの両方で評価される。
提案アルゴリズムは,絶対強度誤差(48%削減)と画像類似度指数(平均11%改善)の両方において,最先端の手法より優れている。
関連論文リスト
- Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
我々は,HDRイメージングの課題に関する重要な知見に基づいて,Pixel-Asynchronous HDRイメージングシステムを提案する。
提案システムでは,DVS(Dynamic Vision Sensors)とLCDパネルを統合する。
LCDパネルは、その透過性を変化させてDVSの照射インシデントを変調し、ピクセル非依存のイベントストリームをトリガーする。
論文 参考訳(メタデータ) (2024-03-14T13:45:09Z) - EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms
with Real-captured Hybrid Dataset [55.12137324648253]
イベントカメラは、ダイナミックレンジとセンサーの速度で従来のフレームベースの撮像センサーよりも有利な、新興のイメージング技術である。
本稿では,5つのイベント支援画像と映像強調タスクに焦点を当てる。
論文 参考訳(メタデータ) (2023-12-13T15:42:04Z) - Event-based Continuous Color Video Decompression from Single Frames [38.59798259847563]
本研究では,イベントカメラを用いて,単一の静的RGB画像から連続映像を生成する新しい手法であるContinuityCamを提案する。
提案手法は、連続した長距離動きモデリングと特徴平面に基づくニューラル統合モデルを組み合わせることで、イベント内の任意のタイミングでフレーム予測を可能にする。
論文 参考訳(メタデータ) (2023-11-30T18:59:23Z) - An Asynchronous Linear Filter Architecture for Hybrid Event-Frame Cameras [9.69495347826584]
本稿では,HDRビデオ再構成と空間畳み込みのための非同期線形フィルタアーキテクチャを提案する。
提案したAKFパイプラインは、絶対強度誤差(69.4%削減)と画像類似度指数(平均35.5%改善)の両方において、他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-03T12:37:59Z) - Revisiting Event-based Video Frame Interpolation [49.27404719898305]
ダイナミックビジョンセンサーやイベントカメラは、ビデオフレームに豊富な補完情報を提供する。
イベントからの光の流れを推定することは、RGB情報より間違いなく困難である。
イベントベースの中間フレーム合成を複数の単純化段階において漸進的に行う分割・対数戦略を提案する。
論文 参考訳(メタデータ) (2023-07-24T06:51:07Z) - Self-Supervised Scene Dynamic Recovery from Rolling Shutter Images and
Events [63.984927609545856]
任意の時間間隔間での画素単位のダイナミックさを予測するために,イベントベース/イントラフレーム補償器(E-IC)を提案する。
提案手法は,実世界のシナリオにおけるイベントベースRS2GSインバージョンにおいて,顕著な性能を示す。
論文 参考訳(メタデータ) (2023-04-14T05:30:02Z) - Event-based Image Deblurring with Dynamic Motion Awareness [10.81953574179206]
露光時間における実RGBのぼかし画像と関連する事象のペアを含む最初のデータセットを紹介する。
以上の結果より,PSNRは合成データで1.57dB,実イベントデータで1.08dBまで改善された。
論文 参考訳(メタデータ) (2022-08-24T09:39:55Z) - Multi-Bracket High Dynamic Range Imaging with Event Cameras [46.81570594990517]
本稿では,標準カメラとイベントカメラを組み合わせた最初のマルチブラケットHDRパイプラインを提案する。
以上の結果から,PSNRの合成データでは最大5dB,実世界のデータでは最大0.7dBの改善が得られた。
論文 参考訳(メタデータ) (2022-03-13T11:10:47Z) - Globally-Optimal Event Camera Motion Estimation [30.79931004393174]
イベントカメラは、HDR条件でよく機能し、時間分解能の高いバイオインスパイアされたセンサーである。
イベントカメラは、非同期ピクセルレベルの変更を測定し、高度に識別されたフォーマットでそれらを返す。
論文 参考訳(メタデータ) (2022-03-08T08:24:22Z) - Combining Events and Frames using Recurrent Asynchronous Multimodal
Networks for Monocular Depth Prediction [51.072733683919246]
複数のセンサからの非同期および不規則なデータを処理するために、リカレント非同期マルチモーダル(RAM)ネットワークを導入する。
従来のRNNにインスパイアされたRAMネットワークは、非同期に更新され、予測を生成するためにいつでもクエリできる隠れ状態を維持している。
平均深度絶対誤差において,最先端手法を最大30%改善することを示す。
論文 参考訳(メタデータ) (2021-02-18T13:24:35Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。