An Asynchronous Linear Filter Architecture for Hybrid Event-Frame Cameras
- URL: http://arxiv.org/abs/2309.01159v2
- Date: Fri, 30 Aug 2024 03:08:42 GMT
- Title: An Asynchronous Linear Filter Architecture for Hybrid Event-Frame Cameras
- Authors: Ziwei Wang, Yonhon Ng, Cedric Scheerlinck, Robert Mahony,
- Abstract summary: We present an asynchronous linear filter architecture, fusing event and frame camera data, for HDR video reconstruction and spatial convolution.
The proposed AKF pipeline outperforms other state-of-the-art methods in both absolute intensity error (69.4% reduction) and image similarity indexes (average 35.5% improvement)
- Score: 9.69495347826584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras are ideally suited to capture High Dynamic Range (HDR) visual information without blur but provide poor imaging capability for static or slowly varying scenes. Conversely, conventional image sensors measure absolute intensity of slowly changing scenes effectively but do poorly on HDR or quickly changing scenes. In this paper, we present an asynchronous linear filter architecture, fusing event and frame camera data, for HDR video reconstruction and spatial convolution that exploits the advantages of both sensor modalities. The key idea is the introduction of a state that directly encodes the integrated or convolved image information and that is updated asynchronously as each event or each frame arrives from the camera. The state can be read-off as-often-as and whenever required to feed into subsequent vision modules for real-time robotic systems. Our experimental results are evaluated on both publicly available datasets with challenging lighting conditions and fast motions, along with a new dataset with HDR reference that we provide. The proposed AKF pipeline outperforms other state-of-the-art methods in both absolute intensity error (69.4% reduction) and image similarity indexes (average 35.5% improvement). We also demonstrate the integration of image convolution with linear spatial kernels Gaussian, Sobel, and Laplacian as an application of our architecture.
Related papers
- EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms
with Real-captured Hybrid Dataset [55.12137324648253]
Event cameras are emerging imaging technology that offers advantages over conventional frame-based imaging sensors in dynamic range and sensing speed.
This paper focuses on five event-aided image and video enhancement tasks.
arXiv Detail & Related papers (2023-12-13T15:42:04Z) - Revisiting Event-based Video Frame Interpolation [49.27404719898305]
Dynamic vision sensors or event cameras provide rich complementary information for video frame.
estimating optical flow from events is arguably more difficult than from RGB information.
We propose a divide-and-conquer strategy in which event-based intermediate frame synthesis happens incrementally in multiple simplified stages.
arXiv Detail & Related papers (2023-07-24T06:51:07Z) - Self-Supervised Scene Dynamic Recovery from Rolling Shutter Images and
Events [63.984927609545856]
Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals.
We show that the proposed method achieves state-of-the-art and shows remarkable performance for event-based RS2GS inversion in real-world scenarios.
arXiv Detail & Related papers (2023-04-14T05:30:02Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
In this work, we aim ambitiously for a more realistic and challenging task - joint video multi-frame and deblurring under unknown exposure time.
We first adopt a variant of supervised contrastive learning to construct an exposure-aware representation from input blurred frames.
We then build our video reconstruction network upon the exposure and motion representation by progressive exposure-adaptive convolution and motion refinement.
arXiv Detail & Related papers (2023-03-27T09:43:42Z) - HDR Reconstruction from Bracketed Exposures and Events [12.565039752529797]
Reconstruction of high-quality HDR images is at the core of modern computational photography.
We present a multi-modal end-to-end learning-based HDR imaging system that fuses bracketed images and event in the feature domain.
Our framework exploits the higher temporal resolution of events by sub-sampling the input event streams using a sliding window.
arXiv Detail & Related papers (2022-03-28T15:04:41Z) - Enhanced Frame and Event-Based Simulator and Event-Based Video
Interpolation Network [1.4095425725284465]
We present a new, advanced event simulator that can produce realistic scenes recorded by a camera rig with an arbitrary number of sensors located at fixed offsets.
It includes a new frame-based image sensor model with realistic image quality reduction effects, and an extended DVS model with more accurate characteristics.
We show that data generated by our simulator can be used to train our new model, leading to reconstructed images on public datasets of equivalent or better quality than the state of the art.
arXiv Detail & Related papers (2021-12-17T08:27:13Z) - Combining Events and Frames using Recurrent Asynchronous Multimodal
Networks for Monocular Depth Prediction [51.072733683919246]
We introduce Recurrent Asynchronous Multimodal (RAM) networks to handle asynchronous and irregular data from multiple sensors.
Inspired by traditional RNNs, RAM networks maintain a hidden state that is updated asynchronously and can be queried at any time to generate a prediction.
We show an improvement over state-of-the-art methods by up to 30% in terms of mean depth absolute error.
arXiv Detail & Related papers (2021-02-18T13:24:35Z) - An Asynchronous Kalman Filter for Hybrid Event Cameras [13.600773150848543]
Event cameras are ideally suited to capture HDR visual information without blur.
conventional image sensors measure absolute intensity of slowly changing scenes effectively but do poorly on high dynamic range or quickly changing scenes.
We present an event-based video reconstruction pipeline for High Dynamic Range scenarios.
arXiv Detail & Related papers (2020-12-10T11:24:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.