Deep-CR MTLR: a Multi-Modal Approach for Cancer Survival Prediction with
Competing Risks
- URL: http://arxiv.org/abs/2012.05765v3
- Date: Sun, 21 Mar 2021 12:24:13 GMT
- Title: Deep-CR MTLR: a Multi-Modal Approach for Cancer Survival Prediction with
Competing Risks
- Authors: Sejin Kim, Michal Kazmierski and Benjamin Haibe-Kains
- Abstract summary: We present Deep-CR MTLR -- a novel machine learning approach for accurate cancer survival prediction.
We demonstrate improved prognostic performance of the multi-modal approach over single modality predictors in a cohort of 2552 head and neck cancer patients.
- Score: 0.4189643331553922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate survival prediction is crucial for development of precision cancer
medicine, creating the need for new sources of prognostic information.
Recently, there has been significant interest in exploiting routinely collected
clinical and medical imaging data to discover new prognostic markers in
multiple cancer types. However, most of the previous studies focus on
individual data modalities alone and do not make use of recent advances in
machine learning for survival prediction. We present Deep-CR MTLR -- a novel
machine learning approach for accurate cancer survival prediction from
multi-modal clinical and imaging data in the presence of competing risks based
on neural networks and an extension of the multi-task logistic regression
framework. We demonstrate improved prognostic performance of the multi-modal
approach over single modality predictors in a cohort of 2552 head and neck
cancer patients, particularly for cancer specific survival, where our approach
achieves 2-year AUROC of 0.774 and $C$-index of 0.788.
Related papers
- Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities [61.36288157482697]
In the United States, prostate cancer is the second leading cause of deaths in males with a predicted 35,250 deaths in 2024.
In this paper, we investigate combining multiple MRI modalities to train a deep learning model to enhance trust in the models for clinically significant prostate cancer prediction.
arXiv Detail & Related papers (2024-11-07T12:48:27Z) - A Multimodal Object-level Contrast Learning Method for Cancer Survival Risk Prediction [9.005219442274344]
Computer-aided cancer survival risk prediction plays an important role in the timely treatment of patients.
We propose a new training method, multimodal object-level contrast learning, for cancer survival risk prediction.
The survival risk predictor trained by our proposed method outperforms state-of-the-art methods on two public multimodal cancer datasets.
arXiv Detail & Related papers (2024-09-03T07:36:34Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Automated Segmentation and Recurrence Risk Prediction of Surgically
Resected Lung Tumors with Adaptive Convolutional Neural Networks [3.5413688566798096]
Lung cancer is the leading cause of cancer related mortality by a significant margin.
In this paper, we explore the use of convolutional neural networks (CNNs) for the segmentation and recurrence risk prediction of lung tumors.
To the best of our knowledge, it is the first fully automated segmentation and recurrence risk prediction system.
arXiv Detail & Related papers (2022-09-17T23:06:22Z) - DeepMMSA: A Novel Multimodal Deep Learning Method for Non-small Cell
Lung Cancer Survival Analysis [8.78724404464036]
We propose a multimodal deep learning method for non-small cell lung cancer (NSCLC) survival analysis, named DeepMMSA.
This method leverages CT images in combination with clinical data, enabling the abundant information hold within medical images to be associate with lung cancer survival information.
arXiv Detail & Related papers (2021-06-12T11:02:14Z) - Lymph Node Graph Neural Networks for Cancer Metastasis Prediction [0.342658286826597]
We present a novel graph-based approach to incorporate imaging characteristics of existing cancer spread to local lymph nodes.
We trained an edge-gated Graph Convolutional Network (Gated-GCN) to accurately predict the risk of distant metastasis.
arXiv Detail & Related papers (2021-06-03T09:28:14Z) - Survival prediction and risk estimation of Glioma patients using mRNA
expressions [0.0]
Gliomas are lethal type of central nervous system tumors with a poor prognosis.
In this work, we identify survival related 7 gene signature and explore two approaches for survival prediction and risk estimation.
arXiv Detail & Related papers (2020-11-02T00:39:04Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.