A Multimodal Object-level Contrast Learning Method for Cancer Survival Risk Prediction
- URL: http://arxiv.org/abs/2409.02145v1
- Date: Tue, 3 Sep 2024 07:36:34 GMT
- Title: A Multimodal Object-level Contrast Learning Method for Cancer Survival Risk Prediction
- Authors: Zekang Yang, Hong Liu, Xiangdong Wang,
- Abstract summary: Computer-aided cancer survival risk prediction plays an important role in the timely treatment of patients.
We propose a new training method, multimodal object-level contrast learning, for cancer survival risk prediction.
The survival risk predictor trained by our proposed method outperforms state-of-the-art methods on two public multimodal cancer datasets.
- Score: 9.005219442274344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer-aided cancer survival risk prediction plays an important role in the timely treatment of patients. This is a challenging weakly supervised ordinal regression task associated with multiple clinical factors involved such as pathological images, genomic data and etc. In this paper, we propose a new training method, multimodal object-level contrast learning, for cancer survival risk prediction. First, we construct contrast learning pairs based on the survival risk relationship among the samples in the training sample set. Then we introduce the object-level contrast learning method to train the survival risk predictor. We further extend it to the multimodal scenario by applying cross-modal constrast. Considering the heterogeneity of pathological images and genomics data, we construct a multimodal survival risk predictor employing attention-based and self-normalizing based nerural network respectively. Finally, the survival risk predictor trained by our proposed method outperforms state-of-the-art methods on two public multimodal cancer datasets for survival risk prediction.
Related papers
- HACSurv: A Hierarchical Copula-based Approach for Survival Analysis with Dependent Competing Risks [51.95824566163554]
HACSurv is a survival analysis method that learns structures and cause-specific survival functions from data with competing risks.
By capturing the dependencies between risks and censoring, HACSurv achieves better survival predictions.
arXiv Detail & Related papers (2024-10-19T18:52:18Z) - Advancing Head and Neck Cancer Survival Prediction via Multi-Label Learning and Deep Model Interpretation [7.698783025721071]
We propose IMLSP, an Interpretable Multi-Label multi-modal deep Survival Prediction framework for predicting multiple HNC survival outcomes simultaneously.
We also present Grad-TEAM, a Gradient-weighted Time-Event Activation Mapping approach specifically developed for deep survival model visual explanation.
arXiv Detail & Related papers (2024-05-09T01:30:04Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Deep Learning of Semi-Competing Risk Data via a New Neural
Expectation-Maximization Algorithm [5.253100011321437]
Our motivation comes from the Boston Lung Cancer Study, which investigates how risk factors influence a patient's disease trajectory.
We propose a novel neural expectation-maximization algorithm to bridge the gap between classical statistical approaches and machine learning.
arXiv Detail & Related papers (2022-12-22T20:38:57Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
arXiv Detail & Related papers (2022-07-06T19:49:42Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - EPIC-Survival: End-to-end Part Inferred Clustering for Survival
Analysis, Featuring Prognostic Stratification Boosting [0.0]
EPIC-Survival bridges encoding and aggregation into an end-to-end survival modelling approach.
We show that EPIC-Survival performs better than other approaches in modelling intrahepatic cholangiocarcinoma.
arXiv Detail & Related papers (2021-01-26T21:11:45Z) - Deep-CR MTLR: a Multi-Modal Approach for Cancer Survival Prediction with
Competing Risks [0.4189643331553922]
We present Deep-CR MTLR -- a novel machine learning approach for accurate cancer survival prediction.
We demonstrate improved prognostic performance of the multi-modal approach over single modality predictors in a cohort of 2552 head and neck cancer patients.
arXiv Detail & Related papers (2020-12-10T15:51:47Z) - Survival Cluster Analysis [93.50540270973927]
There is an unmet need in survival analysis for identifying subpopulations with distinct risk profiles.
An approach that addresses this need is likely to improve characterization of individual outcomes.
arXiv Detail & Related papers (2020-02-29T22:41:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.