論文の概要: Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection
- arxiv url: http://arxiv.org/abs/2012.05825v1
- Date: Thu, 10 Dec 2020 16:55:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-15 06:16:05.140740
- Title: Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection
- Title(参考訳): 学習できないことを学ぶ: 帰納的分布検出のための正規化アンサンブル
- Authors: Alexandru \c{T}ifrea, Eric Stavarache, Fanny Yang
- Abstract要約: ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
- 参考スコア(独自算出の注目度): 76.39067237772286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models are often used in practice if they achieve good
generalization results on in-distribution (ID) holdout data. When employed in
the wild, they should also be able to detect samples they cannot predict well.
We show that current out-of-distribution (OOD) detection algorithms for neural
networks produce unsatisfactory results in a variety of OOD detection
scenarios, e.g. when OOD data consists of unseen classes or corrupted
measurements. This paper studies how such "hard" OOD scenarios can benefit from
adjusting the detection method after observing a batch of the test data. This
transductive setting is relevant when the advantage of even a slightly delayed
OOD detection outweighs the financial cost for additional tuning. We propose a
novel method that uses an artificial labeling scheme for the test data and
regularization to obtain ensembles of models that produce contradictory
predictions only on the OOD samples in a test batch. We show via comprehensive
experiments that our approach is indeed able to significantly outperform both
inductive and transductive baselines on difficult OOD detection scenarios, such
as unseen classes on CIFAR-10/CIFAR-100, severe corruptions(CIFAR-C), and
strong covariate shift (ImageNet vs ObjectNet).
- Abstract(参考訳): マシンラーニングモデルは、id(in-distribution)ホールドアウトデータで優れた一般化結果を達成した場合によく使用される。
野生で働いている場合は、予測できないサンプルも検出できるはずだ。
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
OODデータが目に見えないクラスまたは破損した測定値で構成されている場合。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
このトランスダクティブ・セッティングは、わずかに遅延したOOD検出の利点が追加チューニングの金銭的コストを上回る場合に有効である。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
我々は,CIFAR-10/CIFAR-100の未確認クラス,CIFAR-C,強共変量シフト(ImageNet vs ObjectNet)など,難解なOOD検出シナリオにおいて,インダクティブベースラインとトランスダクティブベースラインの両方を大幅に上回っていることを示す。
関連論文リスト
- Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
アウト・オブ・ディストリビューション(OOD)検出は、予測者が有効な予測を行うことができないOODデータをイン・ディストリビューション(ID)データとして識別する。
通常、OODパターンを識別できる予測器をトレーニングするために、実際のアウト・オブ・ディストリビューション(OOD)データを収集するのは困難である。
本稿では,Auxiliary Task-based OOD Learning (ATOL) というデータ生成に基づく学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-06T16:26:52Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
オープンソースアプリケーションに機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々は、未ラベルのオンラインデータをテスト時に直接利用してOOD検出性能を向上させる、テスト時OOD検出と呼ばれる新しいパラダイムを導入する。
本稿では,入出力フィルタ,IDメモリバンク,意味的に一貫性のある目的からなる適応外乱最適化(AUTO)を提案する。
論文 参考訳(メタデータ) (2023-03-22T02:28:54Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
既存のポストホック法はOOD検出でのみ評価した場合とは大きく異なる性能を示す。
本稿では,特徴に依存しない情報を用いて,ソフトマックスに基づく信頼度を向上するSCOD(Softmax Information Retaining Combination, SIRC)の新たな手法を提案する。
多様なImageNetスケールのデータセットと畳み込みニューラルネットワークアーキテクチャの実験は、SIRCがSCODのベースラインを一貫して一致または上回っていることを示している。
論文 参考訳(メタデータ) (2022-07-15T14:39:57Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Statistical Testing for Efficient Out of Distribution Detection in Deep
Neural Networks [26.0303701309125]
本稿では,Deep Neural Networks の Out Of Distribution (OOD) 検出問題を統計的仮説テスト問題として考察する。
このフレームワークに基づいて、低階統計に基づいた新しいOOD手順を提案します。
本手法は,ネットワークパラメータの再トレーニングを行わずに,oodベンチマークの精度が向上した。
論文 参考訳(メタデータ) (2021-02-25T16:14:47Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z) - Detecting Out-of-Distribution Examples with In-distribution Examples and
Gram Matrices [8.611328447624679]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(Out-of-Distribution)の例で示すと、信頼性と誤った予測をもたらす。
本稿では,行動パターンとクラス予測の不整合を識別し,OODのサンプルを検出することを提案する。
グラム行列による活動パターンの特徴付けとグラム行列値の異常の同定により,高いOOD検出率が得られることがわかった。
論文 参考訳(メタデータ) (2019-12-28T19:44:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。