論文の概要: Detecting Out-of-Distribution Examples with In-distribution Examples and
Gram Matrices
- arxiv url: http://arxiv.org/abs/1912.12510v2
- Date: Thu, 9 Jan 2020 15:17:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-17 12:36:29.315359
- Title: Detecting Out-of-Distribution Examples with In-distribution Examples and
Gram Matrices
- Title(参考訳): 分布内例とグラム行列を用いた分布外例の検出
- Authors: Chandramouli Shama Sastry, Sageev Oore
- Abstract要約: ディープニューラルネットワークは、アウト・オブ・ディストリビューション(Out-of-Distribution)の例で示すと、信頼性と誤った予測をもたらす。
本稿では,行動パターンとクラス予測の不整合を識別し,OODのサンプルを検出することを提案する。
グラム行列による活動パターンの特徴付けとグラム行列値の異常の同定により,高いOOD検出率が得られることがわかった。
- 参考スコア(独自算出の注目度): 8.611328447624679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When presented with Out-of-Distribution (OOD) examples, deep neural networks
yield confident, incorrect predictions. Detecting OOD examples is challenging,
and the potential risks are high. In this paper, we propose to detect OOD
examples by identifying inconsistencies between activity patterns and class
predicted. We find that characterizing activity patterns by Gram matrices and
identifying anomalies in gram matrix values can yield high OOD detection rates.
We identify anomalies in the gram matrices by simply comparing each value with
its respective range observed over the training data. Unlike many approaches,
this can be used with any pre-trained softmax classifier and does not require
access to OOD data for fine-tuning hyperparameters, nor does it require OOD
access for inferring parameters. The method is applicable across a variety of
architectures and vision datasets and, for the important and surprisingly hard
task of detecting far-from-distribution out-of-distribution examples, it
generally performs better than or equal to state-of-the-art OOD detection
methods (including those that do assume access to OOD examples).
- Abstract(参考訳): out-of-distribution (ood)の例を示すと、ディープニューラルネットワークは自信と誤った予測をもたらす。
OOD例の検出は困難であり、潜在的なリスクが高い。
本稿では,行動パターンとクラス予測の不整合を識別し,OODのサンプルを検出することを提案する。
グラム行列による活動パターンの特徴付けとグラム行列値の異常の同定により高いOOD検出率が得られることがわかった。
トレーニングデータ上で観測された各値と各範囲を単純に比較することで,グラム行列内の異常を同定する。
多くのアプローチとは異なり、これは事前訓練されたソフトマックス分類器で使用することができ、微調整されたハイパーパラメーターにOODデータにアクセスする必要はない。
この手法は様々なアーキテクチャやビジョンデータセットに適用可能であり、分布外分布の検出において重要かつ驚くほど難しいタスクに対して、一般的に最先端のOOD検出方法(OODの例へのアクセスを前提とするものを含む)よりも優れた性能を発揮する。
関連論文リスト
- Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection [63.93728560200819]
unsupervised out-of-distribution (U-OOD) は、未表示のin-distriion(ID)データのみに基づいて訓練された検出器でデータサンプルを識別することである。
近年の研究は、DGMに基づく様々な検出器を開発し、可能性を超えて移動している。
本研究では,各方向,特にポストホック前とデータセットエントロピー・ミューチュアルキャリブレーションの2つの手法を適用した。
実験の結果、結果が新しい最先端のU-OOD検出器になる可能性が示された。
論文 参考訳(メタデータ) (2024-09-05T02:58:13Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
アウト・オブ・ディストリビューション(OOD)検出は、予測者が有効な予測を行うことができないOODデータをイン・ディストリビューション(ID)データとして識別する。
通常、OODパターンを識別できる予測器をトレーニングするために、実際のアウト・オブ・ディストリビューション(OOD)データを収集するのは困難である。
本稿では,Auxiliary Task-based OOD Learning (ATOL) というデータ生成に基づく学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-06T16:26:52Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Detecting Out-of-distribution Examples via Class-conditional Impressions
Reappearing [30.938412222724608]
Out-of-Distribution(OOD)検出は、標準のディープニューラルネットワークを拡張して、元のトレーニングデータと異常な入力を区別することを目的としている。
プライバシーとセキュリティのため、補助的なデータは現実のシナリオでは実用的ではない傾向にある。
我々は,C2IR(Class-Conditional Impressions Reappearing)と呼ばれる,自然データに対する訓練を伴わないデータフリー手法を提案する。
論文 参考訳(メタデータ) (2023-03-17T02:55:08Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
我々は,OODグラフを検出するための新しいグラフコントラスト学習フレームワークGOOD-Dを開発した。
GOOD-Dは、潜在IDパターンをキャプチャし、異なる粒度のセマンティック不整合に基づいてOODグラフを正確に検出することができる。
教師なしグラフレベルのOOD検出における先駆的な研究として,提案手法と最先端手法を比較した総合的なベンチマークを構築した。
論文 参考訳(メタデータ) (2022-11-08T12:41:58Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。