論文の概要: Multilingual Transfer Learning for QA Using Translation as Data
Augmentation
- arxiv url: http://arxiv.org/abs/2012.05958v1
- Date: Thu, 10 Dec 2020 20:29:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-15 06:28:00.605532
- Title: Multilingual Transfer Learning for QA Using Translation as Data
Augmentation
- Title(参考訳): 翻訳をデータ拡張として用いたQAのための多言語変換学習
- Authors: Mihaela Bornea, Lin Pan, Sara Rosenthal, Radu Florian, Avirup Sil
- Abstract要約: 我々は,多言語組込みを意味空間に近づけることで,言語間伝達を改善する戦略を検討する。
言語敵対的トレーニングと言語仲裁フレームワークという2つの新しい戦略を提案し、(ゼロリソースの)クロスリンガルトランスファーのパフォーマンスを大幅に改善します。
実験により,提案モデルは,最近導入された多言語MLQAデータセットとTyDiQAデータセットにおいて,以前のゼロショットベースラインよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 13.434957024596898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior work on multilingual question answering has mostly focused on using
large multilingual pre-trained language models (LM) to perform zero-shot
language-wise learning: train a QA model on English and test on other
languages. In this work, we explore strategies that improve cross-lingual
transfer by bringing the multilingual embeddings closer in the semantic space.
Our first strategy augments the original English training data with machine
translation-generated data. This results in a corpus of multilingual
silver-labeled QA pairs that is 14 times larger than the original training set.
In addition, we propose two novel strategies, language adversarial training and
language arbitration framework, which significantly improve the (zero-resource)
cross-lingual transfer performance and result in LM embeddings that are less
language-variant. Empirically, we show that the proposed models outperform the
previous zero-shot baseline on the recently introduced multilingual MLQA and
TyDiQA datasets.
- Abstract(参考訳): 多言語質問応答に関する先行研究は、英語でQAモデルを訓練し、他の言語でテストするゼロショット言語学習を実行するために、大規模な多言語事前学習言語モデル(LM)を使うことに主に焦点を合わせてきた。
本研究では,多言語組込みを意味空間に近づけることで,言語間伝達を改善する戦略を検討する。
最初の戦略は、機械翻訳生成データによる英語のトレーニングデータを強化する。
この結果、元々のトレーニングセットの14倍の大きさの多言語銀ラベルQAペアのコーパスが得られる。
さらに,(ゼロリソース)言語間転送性能を著しく向上させ,言語変化の少ないlm埋め込みを実現する,言語敵訓練と言語調停フレームワークを提案する。
実験により,提案モデルは,最近導入された多言語MLQAデータセットとTyDiQAデータセットにおいて,以前のゼロショットベースラインよりも優れていることを示す。
関連論文リスト
- Zero-shot Cross-lingual Transfer without Parallel Corpus [6.937772043639308]
本稿では,事前学習モデルを用いてゼロショット言語間移動を行う手法を提案する。
タスク関連のバイリンガル情報アライメントを適用するバイリンガルタスクフィッティングモジュールで構成されている。
自己学習モジュールは、ラベルのないデータに対して擬似ソフトおよびハードラベルを生成し、それを利用して自己学習を行う。
論文 参考訳(メタデータ) (2023-10-07T07:54:22Z) - Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer [92.80671770992572]
言語間移動は多言語NLPにおける中心的なタスクである。
このタスクの以前の作業では、並列コーパス、バイリンガル辞書、その他の注釈付きアライメントデータを使用していた。
ゼロショットの言語間移動を改善するため, 単純で効果的なSALT法を提案する。
論文 参考訳(メタデータ) (2023-09-19T19:30:56Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Cross-Lingual Transfer Learning for Phrase Break Prediction with
Multilingual Language Model [13.730152819942445]
言語間変換学習は低リソース言語の性能向上に特に有効である。
このことは、リソース不足言語におけるTSフロントエンドの開発には、言語間転送が安価で効果的であることを示している。
論文 参考訳(メタデータ) (2023-06-05T04:10:04Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - A Simple and Effective Method to Improve Zero-Shot Cross-Lingual
Transfer Learning [6.329304732560936]
既存のゼロショットのクロスリンガル転送法は、並列コーパスやバイリンガル辞書に依存している。
意味喪失のない仮想多言語埋め込みに英語の埋め込みを移すための埋め込み・プッシュ・アテンション・プル・ロバスト・ターゲットを提案する。
論文 参考訳(メタデータ) (2022-10-18T15:36:53Z) - Bilingual Alignment Pre-training for Zero-shot Cross-lingual Transfer [33.680292990007366]
本稿では,埋め込みの整合性を向上し,ゼロショットの言語間転送性能を向上させることを目的とする。
本稿では,従来の知識として統計アライメント情報を用いて,バイリンガル単語予測を導出するアライメント言語モデル(Alignment Language Model, AlignLM)を提案する。
その結果、AlignLMはMLQAおよびXNLIデータセット上でゼロショット性能を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2021-06-03T10:18:43Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。