論文の概要: Confidence Estimation via Auxiliary Models
- arxiv url: http://arxiv.org/abs/2012.06508v1
- Date: Fri, 11 Dec 2020 17:21:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 05:28:28.168101
- Title: Confidence Estimation via Auxiliary Models
- Title(参考訳): 補助モデルによる信頼度推定
- Authors: Charles Corbi\`ere, Nicolas Thome, Antoine Saporta, Tuan-Hung Vu,
Matthieu Cord, Patrick P\'erez
- Abstract要約: モデル信頼のための新しいターゲット基準、すなわち真のクラス確率(TCP)を紹介します。
標準最大クラス確率 (MCP) よりも TCP が信頼度推定に優れた特性を提供することを示す。
- 参考スコア(独自算出の注目度): 47.08749569008467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliably quantifying the confidence of deep neural classifiers is a
challenging yet fundamental requirement for deploying such models in
safety-critical applications. In this paper, we introduce a novel target
criterion for model confidence, namely the true class probability (TCP). We
show that TCP offers better properties for confidence estimation than standard
maximum class probability (MCP). Since the true class is by essence unknown at
test time, we propose to learn TCP criterion from data with an auxiliary model,
introducing a specific learning scheme adapted to this context. We evaluate our
approach on the task of failure prediction and of self-training with
pseudo-labels for domain adaptation, which both necessitate effective
confidence estimates. Extensive experiments are conducted for validating the
relevance of the proposed approach in each task. We study various network
architectures and experiment with small and large datasets for image
classification and semantic segmentation. In every tested benchmark, our
approach outperforms strong baselines.
- Abstract(参考訳): ディープニューラルネットワーク分類器の信頼性を確実に定量化することは、そのようなモデルを安全クリティカルなアプリケーションにデプロイする上で、難しいが基本的な要件である。
本稿では,モデル信頼度のための新しい目標基準,すなわち真のクラス確率(tcp)を提案する。
我々は,TCPが標準最大クラス確率(MCP)よりも信頼性推定に優れていることを示す。
真のクラスは本質的にテスト時に未知であるため、補助モデルを用いてデータからTCPの基準を学習し、この文脈に適応した特定の学習スキームを導入することを提案する。
提案手法は,障害予測と疑似ラベルによる自己学習の課題に対して,効果的な信頼度評価を必要とする手法である。
各タスクにおける提案手法の妥当性を検証するために,広範な実験を行った。
様々なネットワークアーキテクチャを研究し,画像分類とセマンティックセグメンテーションのための小型・大規模データセットを用いた実験を行った。
テストされたベンチマークで、我々のアプローチは強いベースラインよりも優れています。
関連論文リスト
- A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
大規模言語モデル(LLM)における最初の形式的確率的評価フレームワークを紹介する。
モデルの出力分布に関する高い確率保証を持つ新しい指標を導出する。
私たちのメトリクスはアプリケーションに依存しないので、デプロイ前にモデル機能についてより信頼性の高い見積を行うことができます。
論文 参考訳(メタデータ) (2024-10-04T15:44:23Z) - Robust Deep Learning for Autonomous Driving [0.0]
モデル信頼度を確実に推定する新しい基準を導入する:真のクラス確率(TCP)
真のクラスは本質的にテスト時に未知であるため、補助モデルを用いてデータからTCPの基準を学習し、この文脈に適応した特定の学習スキームを導入することを提案する。
本研究は, 既知モデルに基づく新たな不確実性尺度を導入することで, 誤分類と分布外サンプルを共同で検出する課題に対処する。
論文 参考訳(メタデータ) (2022-11-14T22:07:11Z) - Using Sum-Product Networks to Assess Uncertainty in Deep Active Learning [3.7507283158673212]
本稿では,畳み込みニューラルネットワーク(CNN)を用いた深層能動学習における不確かさの計算方法を提案する。
CNN が抽出した特徴表現を Sum-Product Network (SPN) のトレーニングデータとして利用する。
論文 参考訳(メタデータ) (2022-06-20T14:28:19Z) - Learning Optimal Conformal Classifiers [32.68483191509137]
コンフォーマル予測(CP)は、真のクラスを含む信頼セットをユーザが特定した確率で予測するために用いられる。
本稿では, CP を用いた学習において, コンフォーマルラッパーをエンド・ツー・エンドとしたトレーニングモデルを用いて, CP による差別化戦略について検討する。
コンフォメーショントレーニング(ConfTr)は、平均信頼度セットのサイズを小さくすることで、最先端のCP手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-18T11:25:33Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Failure Prediction by Confidence Estimation of Uncertainty-Aware
Dirichlet Networks [6.700873164609009]
不確実性を考慮したディープディリクレニューラルネットワークは、真のクラス確率計量における正しい予測と誤予測の信頼性の分離を改善できることが示されている。
不均衡とTCP制約を考慮に入れながら、予測信頼度と一致させることで、真のクラス確率を学習するための新しい基準を提案する。
論文 参考訳(メタデータ) (2020-10-19T21:06:45Z) - A general framework for defining and optimizing robustness [74.67016173858497]
分類器の様々な種類の堅牢性を定義するための厳密でフレキシブルなフレームワークを提案する。
我々の概念は、分類器の堅牢性は正確性とは無関係な性質と考えるべきであるという仮定に基づいている。
我々は,任意の分類モデルに適用可能な,非常に一般的なロバスト性フレームワークを開発する。
論文 参考訳(メタデータ) (2020-06-19T13:24:20Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
事前学習されたトランスモデルの微調整は、一般的なNLPタスクを解決するための標準的なアプローチとなっている。
そこで本研究では,可視性ランキングタスクをフルテキスト形式でキャストする新たなスコアリング手法を提案する。
提案手法は, ランダム再起動にまたがって, より安定した学習段階を提供することを示す。
論文 参考訳(メタデータ) (2020-04-29T10:54:40Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。