論文の概要: AIforCOVID: predicting the clinical outcomes in patients with COVID-19
applying AI to chest-X-rays. An Italian multicentre study
- arxiv url: http://arxiv.org/abs/2012.06531v1
- Date: Fri, 11 Dec 2020 18:03:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 03:05:33.206601
- Title: AIforCOVID: predicting the clinical outcomes in patients with COVID-19
applying AI to chest-X-rays. An Italian multicentre study
- Title(参考訳): AIforCOVID: 新型コロナウイルス患者の胸部X線にAIを適用した臨床結果を予測する。
イタリアの多元研究
- Authors: Paolo Soda, Natascha Claudia D'Amico, Jacopo Tessadori, Giovanni
Valbusa, Valerio Guarrasi, Chandra Bortolotto, Muhammad Usman Akbar, Rosa
Sicilia, Ermanno Cordelli, Deborah Fazzini, Michaela Cellina, Giancarlo
Oliva, Giovanni Callea, Silvia Panella, Maurizio Cariati, Diletta Cozzi,
Vittorio Miele, Elvira Stellato, Gian Paolo Carrafiello, Giulia Castorani,
Annalisa Simeone, Lorenzo Preda, Giulio Iannello, Alessio Del Bue, Fabio
Tedoldi, Marco Al\`i, Diego Sona and Sergio Papa
- Abstract要約: 胸部X線(CXR)が集中治療や死亡などの重篤な結果の危険にさらされる患者の早期発見のための可能なツールとして使用できるかどうかを検討する。
CXRは、CT(Computed tomography)と比較して、より単純で、より速く、より広く、放射線線量を減らす放射線技術である。
2020年春にイタリアの6つの病院から820人の患者から収集されたデータを含むデータセットを提案する。
- 参考スコア(独自算出の注目度): 7.456548336226919
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent epidemiological data report that worldwide more than 53 million people
have been infected by SARS-CoV-2, resulting in 1.3 million deaths. The disease
has been spreading very rapidly and few months after the identification of the
first infected, shortage of hospital resources quickly became a problem. In
this work we investigate whether chest X-ray (CXR) can be used as a possible
tool for the early identification of patients at risk of severe outcome, like
intensive care or death. CXR is a radiological technique that compared to
computed tomography (CT) it is simpler, faster, more widespread and it induces
lower radiation dose. We present a dataset including data collected from 820
patients by six Italian hospitals in spring 2020 during the first COVID-19
emergency. The dataset includes CXR images, several clinical attributes and
clinical outcomes. We investigate the potential of artificial intelligence to
predict the prognosis of such patients, distinguishing between severe and mild
cases, thus offering a baseline reference for other researchers and
practitioners. To this goal, we present three approaches that use features
extracted from CXR images, either handcrafted or automatically by convolutional
neuronal networks, which are then integrated with the clinical data. Exhaustive
evaluation shows promising performance both in 10-fold and leave-one-centre-out
cross-validation, implying that clinical data and images have the potential to
provide useful information for the management of patients and hospital
resources.
- Abstract(参考訳): 最近の疫学的データによると、世界中で5300万人以上がSARS-CoV-2に感染し、1300万人が死亡した。
この病気は、最初の感染者の特定から数ヶ月後、急速に拡大しており、すぐに病院の資源不足が問題となった。
本研究は,胸部X線(CXR)を,集中治療や死亡などの重篤な結果のリスクのある患者を早期に同定するためのツールとして利用できるかを検討する。
CXRは、CT(Computed tomography)と比較して、より単純で、より速く、より広く、放射線線量を減らす放射線技術である。
2020年春にイタリアの6つの病院から820人の患者から収集されたデータを含むデータセットを提案する。
データセットには、CXR画像、いくつかの臨床属性、臨床結果が含まれる。
重症例と軽症例を区別し,その予後を予測するための人工知能の可能性を検討した。
そこで本研究では,CXR画像から抽出した特徴を,畳み込み神経ネットワークによって手作りまたは自動で利用し,臨床データと統合する3つのアプローチを提案する。
被曝評価は10倍と1セントのクロスバリデーションの両方で有望なパフォーマンスを示し、臨床データや画像が患者や病院の資源管理に有用な情報を提供する可能性があることを示唆している。
関連論文リスト
- Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
腎細胞癌は生存率の低い重要な世界的な健康上の課題である。
本研究の目的は, 腎細胞癌患者の生存確率を予測できる包括的深層学習モデルを考案することであった。
提案フレームワークは,3次元画像特徴抽出器,臨床変数選択,生存予測の3つのモジュールから構成される。
論文 参考訳(メタデータ) (2023-07-07T13:09:07Z) - BIO-CXRNET: A Robust Multimodal Stacking Machine Learning Technique for
Mortality Risk Prediction of COVID-19 Patients using Chest X-Ray Images and
Clinical Data [0.0]
本研究は、イタリアで入院した930人の新型コロナウイルス患者のリスクを予測するために、25のバイオマーカーとCXR画像を用いている。
提案手法は精度、感度、F1スコアをそれぞれ89.03%、90.44%、89.03%とした。
ノモグラムに基づく採点法では、F1スコア92.88 %の高リスク患者の死亡確率を予測することができた。
論文 参考訳(メタデータ) (2022-06-15T15:23:43Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
我々は,肺POCUS画像からの新型コロナウイルススクリーニングに適した,高効率で自己注意型の深層畳み込みニューラルネットワーク設計であるCOVID-Net USを紹介した。
実験の結果、提案されたCOVID-Net USは、アーキテクチャの複雑さが353倍、計算の複雑さが62倍、Raspberry Piで14.3倍高速なAUCを達成できることがわかった。
リソース制約のある環境において安価な医療と人工知能を提唱するために、COVID-Net USをオープンソースにし、COVID-Netオープンソースイニシアチブの一部として公開しました。
論文 参考訳(メタデータ) (2021-08-05T16:47:33Z) - COVID-Net CXR-S: Deep Convolutional Neural Network for Severity
Assessment of COVID-19 Cases from Chest X-ray Images [74.77272804752306]
胸部CXR画像に基づくSARS-CoV-2陽性患者の空間重症度を予測する畳み込みニューラルネットワークであるCOVID-Net CXR-Sについて紹介する。
患者15,000人以上の多国籍コホートから得られた16,000以上のCXR画像から得られた表現的知識を,重症度評価のためのカスタムネットワークアーキテクチャへ伝達する。
提案したCXR-Sは、新型コロナウイルス陽性患者のCXR画像のコンピュータ支援による重症度評価のための強力なツールとなる可能性がある。
論文 参考訳(メタデータ) (2021-05-01T14:15:12Z) - Challenges in the application of a mortality prediction model for
COVID-19 patients on an Indian cohort [0.0]
ヤンなど。
機械学習(ML)メソッドを使って新型コロナウイルス患者の結果を予測する研究が公開されている。
ここでは、covid-19患者の最大のデータセットの1つにデプロイすることで、このモデルの制限を示します。
論文 参考訳(メタデータ) (2021-01-15T07:06:49Z) - An artificial intelligence system for predicting the deterioration of
COVID-19 patients in the emergency department [28.050958444802944]
新型コロナウイルス感染症(COVID-19)のパンデミックでは、救急署の患者を迅速かつ正確にトリアージすることが重要である。
胸部X線画像から学習したディープニューラルネットワークを用いて,データ駆動による劣化リスクの自動予測手法を提案する。
我々は3,661人の患者から得られたデータを用いて,96時間以内の劣化を予測した場合に,受信者の動作特性曲線(AUC)が0.786未満の領域を達成した。
論文 参考訳(メタデータ) (2020-08-04T19:20:31Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。