Learning Consistent Deep Generative Models from Sparse Data via
Prediction Constraints
- URL: http://arxiv.org/abs/2012.06718v1
- Date: Sat, 12 Dec 2020 04:18:50 GMT
- Title: Learning Consistent Deep Generative Models from Sparse Data via
Prediction Constraints
- Authors: Gabriel Hope, Madina Abdrakhmanova, Xiaoyin Chen, Michael C. Hughes,
Michael C. Hughes and Erik B. Sudderth
- Abstract summary: We develop a new framework for learning variational autoencoders and other deep generative models.
We show that these two contributions -- prediction constraints and consistency constraints -- lead to promising image classification performance.
- Score: 16.48824312904122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a new framework for learning variational autoencoders and other
deep generative models that balances generative and discriminative goals. Our
framework optimizes model parameters to maximize a variational lower bound on
the likelihood of observed data, subject to a task-specific prediction
constraint that prevents model misspecification from leading to inaccurate
predictions. We further enforce a consistency constraint, derived naturally
from the generative model, that requires predictions on reconstructed data to
match those on the original data. We show that these two contributions --
prediction constraints and consistency constraints -- lead to promising image
classification performance, especially in the semi-supervised scenario where
category labels are sparse but unlabeled data is plentiful. Our approach
enables advances in generative modeling to directly boost semi-supervised
classification performance, an ability we demonstrate by augmenting deep
generative models with latent variables capturing spatial transformations.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Uncertainty Quantification of Surrogate Models using Conformal Prediction [7.445864392018774]
We formalise a conformal prediction framework that satisfies predictions in a model-agnostic manner, requiring near-zero computational costs.
The paper looks at providing statistically valid error bars for deterministic models, as well as crafting guarantees to the error bars of probabilistic models.
arXiv Detail & Related papers (2024-08-19T10:46:19Z) - Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
We present an inference framework for estimating regression coefficients in conditional mean models.
We develop an augmented inverse probability weighted (AIPW) method, employing regularized estimators for both propensity score (PS) and outcome regression (OR) models.
Our theoretical findings are verified through extensive simulation studies and a real-world data application.
arXiv Detail & Related papers (2024-06-20T00:34:54Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Performative Prediction with Bandit Feedback: Learning through Reparameterization [23.039885534575966]
performative prediction is a framework for studying social prediction in which the data distribution itself changes in response to the deployment of a model.
We develop a reparametization that reparametrizes the performative prediction objective as a function of induced data distribution.
arXiv Detail & Related papers (2023-05-01T21:31:29Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - On Learning Prediction-Focused Mixtures [30.338543175315507]
We introduce prediction-focused modeling for mixtures, which automatically selects the dimensions relevant to the prediction task.
Our approach identifies relevant signal from the input, outperforms models that are not prediction-focused, and is easy to optimize.
arXiv Detail & Related papers (2021-10-25T19:14:36Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.