Spectral Unmixing With Multinomial Mixture Kernel and Wasserstein
Generative Adversarial Loss
- URL: http://arxiv.org/abs/2012.06859v1
- Date: Sat, 12 Dec 2020 16:49:01 GMT
- Title: Spectral Unmixing With Multinomial Mixture Kernel and Wasserstein
Generative Adversarial Loss
- Authors: Savas Ozkan, Gozde Bozdagi Akar
- Abstract summary: This study proposes a novel framework for spectral unmixing by using 1D convolution kernels and spectral uncertainty.
High-level representations are computed from data, and they are further modeled with the Multinomial Mixture Model.
Experiments are performed on both real and synthetic datasets.
- Score: 4.56877715768796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a novel framework for spectral unmixing by using 1D
convolution kernels and spectral uncertainty. High-level representations are
computed from data, and they are further modeled with the Multinomial Mixture
Model to estimate fractions under severe spectral uncertainty. Furthermore, a
new trainable uncertainty term based on a nonlinear neural network model is
introduced in the reconstruction step. All uncertainty models are optimized by
Wasserstein Generative Adversarial Network (WGAN) to improve stability and
capture uncertainty. Experiments are performed on both real and synthetic
datasets. The results validate that the proposed method obtains
state-of-the-art performance, especially for the real datasets compared to the
baselines. Project page at: https://github.com/savasozkan/dscn.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
We introduce a novel method, DiffHybrid-UQ, for effective and efficient uncertainty propagation and estimation in hybrid neural differentiable models.
Specifically, our approach effectively discerns and quantifies both aleatoric uncertainties, arising from data noise, and epistemic uncertainties, resulting from model-form discrepancies and data sparsity.
arXiv Detail & Related papers (2023-12-30T07:40:47Z) - FiMReSt: Finite Mixture of Multivariate Regulated Skew-t Kernels -- A
Flexible Probabilistic Model for Multi-Clustered Data with
Asymmetrically-Scattered Non-Gaussian Kernels [0.0]
We propose a regularized iterative optimization process to train the mixture model, enhancing the generalizability and power for modeling the skews.
The resulting mixture model is named Finite Mixture of Multi Regulated Skewt (FiMStss)
To validate the performance, we have conducted a comprehensive experiment on several real-world datasets and a synthetic dataset.
arXiv Detail & Related papers (2023-05-15T23:53:59Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
A novel generative model framework called the structured generative model (SGM) is proposed that makes straightforward optimization possible.
The implementation employs a single neural network driven by an orthonormal input to a single white noise source adapted to learn an infinite Gaussian mixture model.
Preliminary results show that SGM significantly improves MINE estimation in terms of data efficiency and variance, conventional and variational Gaussian mixture models, as well as for training adversarial networks.
arXiv Detail & Related papers (2021-10-12T07:44:18Z) - A Nonconvex Framework for Structured Dynamic Covariance Recovery [24.471814126358556]
We propose a flexible yet interpretable model for high-dimensional data with time-varying second order statistics.
Motivated by the literature, we quantify factorization and smooth temporal data.
We show that our approach outperforms existing baselines.
arXiv Detail & Related papers (2020-11-11T07:09:44Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Learning Mixtures of Low-Rank Models [89.39877968115833]
We study the problem of learning computational mixtures of low-rank models.
We develop an algorithm that is guaranteed to recover the unknown matrices with near-optimal sample.
In addition, the proposed algorithm is provably stable against random noise.
arXiv Detail & Related papers (2020-09-23T17:53:48Z) - Learning Generative Models using Denoising Density Estimators [29.068491722778827]
We introduce a new generative model based on denoising density estimators (DDEs)
Our main contribution is a novel technique to obtain generative models by minimizing the KL-divergence directly.
Experimental results demonstrate substantial improvement in density estimation and competitive performance in generative model training.
arXiv Detail & Related papers (2020-01-08T20:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.