論文の概要: PAIRS AutoGeo: an Automated Machine Learning Framework for Massive
Geospatial Data
- arxiv url: http://arxiv.org/abs/2012.06907v1
- Date: Sat, 12 Dec 2020 21:12:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-10 05:27:33.899060
- Title: PAIRS AutoGeo: an Automated Machine Learning Framework for Massive
Geospatial Data
- Title(参考訳): PAIRS AutoGeo:大規模地理空間データのための機械学習フレームワーク
- Authors: Wang Zhou, Levente J. Klein, Siyuan Lu
- Abstract要約: IBM PAIRS Geoscopeビッグデータおよび分析プラットフォームで、PAIRS AutoGeoと呼ばれる地理空間データのための自動機械学習フレームワークが導入された。
このフレームワークは、必要なデータをロケーション座標に収集し、トレーニングデータを組み立て、品質チェックを行い、その後のデプロイメントのために複数の機械学習モデルをトレーニングする。
このユースケースは、PAIRS AutoGeoが広範な地理空間の専門知識なしに機械学習を活用できるようにする方法の例です。
- 参考スコア(独自算出の注目度): 7.742399489996169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An automated machine learning framework for geospatial data named PAIRS
AutoGeo is introduced on IBM PAIRS Geoscope big data and analytics platform.
The framework simplifies the development of industrial machine learning
solutions leveraging geospatial data to the extent that the user inputs are
minimized to merely a text file containing labeled GPS coordinates. PAIRS
AutoGeo automatically gathers required data at the location coordinates,
assembles the training data, performs quality check, and trains multiple
machine learning models for subsequent deployment. The framework is validated
using a realistic industrial use case of tree species classification.
Open-source tree species data are used as the input to train a random forest
classifier and a modified ResNet model for 10-way tree species classification
based on aerial imagery, which leads to an accuracy of $59.8\%$ and $81.4\%$,
respectively. This use case exemplifies how PAIRS AutoGeo enables users to
leverage machine learning without extensive geospatial expertise.
- Abstract(参考訳): PAIRS AutoGeoと名付けられた地理空間データのための自動機械学習フレームワークは、IBM PAIRS Geoscopeのビッグデータと分析プラットフォームで導入された。
このフレームワークは、地理空間データを活用する産業用機械学習ソリューションの開発を単純化し、ユーザ入力を単にラベル付きGPS座標を含むテキストファイルに最小化する。
pairs autogeoは、必要なデータをロケーション座標で自動的に収集し、トレーニングデータを組み立て、品質チェックを行い、その後のデプロイメントのために複数の機械学習モデルをトレーニングする。
本フレームワークは,木種分類の現実的な産業利用事例を用いて検証した。
オープンソースの木種データは、航空画像に基づく10方向木種分類のためのランダム森林分類器と改良されたResNetモデルを訓練するための入力として使用され、それぞれ59.8\%$と81.4\%$の精度をもたらす。
このユースケースは、PAIRS AutoGeoがユーザーが広い地理空間の専門知識を使わずに機械学習を活用できるようにする方法を示している。
関連論文リスト
- Geo-FuB: A Method for Constructing an Operator-Function Knowledge Base for Geospatial Code Generation Tasks Using Large Language Models [0.5242869847419834]
本研究では,地理空間記述のセマンティクスを活用して,そのような知識基盤を構築するためのフレームワークを提案する。
サンプルの知識ベースであるGeo-FuBは154,075のGoogle Earth Engineスクリプトで構築されており、GitHubで公開されている。
論文 参考訳(メタデータ) (2024-10-28T12:50:27Z) - An Autonomous GIS Agent Framework for Geospatial Data Retrieval [0.0]
本研究では,必要な地理空間データを検索できる自律型GISエージェントフレームワークを提案する。
我々はQGISプラグイン(GeoData Retrieve Agent)とPythonプログラムとしてリリースされたフレームワークに基づいたプロトタイプエージェントを開発した。
実験の結果は、OpenStreetMap、行政境界、米国国勢調査局の人口統計データなど、さまざまなソースからデータを取得する能力を示している。
論文 参考訳(メタデータ) (2024-07-13T14:23:57Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
大規模言語モデルから地理空間的知識を効果的に抽出する新しい手法であるGeoLLMを提案する。
我々は、人口密度や経済生活の計測など、国際社会への関心の中心となる複数の課題にまたがるアプローチの有用性を実証する。
実験の結果, LLMは試料効率が高く, 地理空間情報に富み, 世界中のロバストであることがわかった。
論文 参考訳(メタデータ) (2023-10-10T00:03:23Z) - Scalable Label-efficient Footpath Network Generation Using Remote
Sensing Data and Self-supervised Learning [7.796025683842462]
この研究は、機械学習モデルを用いてリモートセンシング画像に基づいて、フットパスネットワークを生成するための自動パイプラインを実装している。
教師付き手法は大量のトレーニングデータを必要とするため,アノテーションの要求を減らすために特徴表現学習に自己教師付き手法を用いる。
フットパス多角形を抽出してフットパスネットワークに変換し、地理的情報システムによって容易にロードおよび可視化することができる。
論文 参考訳(メタデータ) (2023-09-18T02:56:40Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
我々はGeoGLUEと呼ばれるGeoGraphic Language Understanding Evaluationベンチマークを提案する。
オープンソースの地理資源からデータを収集し、6つの自然言語理解タスクを導入する。
我々は,GeoGLUEベンチマークの有効性と意義を示す一般ベースラインの評価実験と解析を行った。
論文 参考訳(メタデータ) (2023-05-11T03:21:56Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
本稿では,機械学習を用いた衛星画像時系列解析のためのオープンソースRパッケージである sit について述べる。
本手法は, Cerrado Biome のケーススタディにより, 土地利用と土地被覆マップの精度が高いことを示す。
論文 参考訳(メタデータ) (2022-04-24T15:23:25Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
リモートセンシングデータのためのラベルの自動生成のためのビッグデータ処理パイプラインを評価する。
我々は,大規模データプラットフォームであるIBM PAIRSを用いて,密集都市部でそのようなラベルを動的に生成する。
論文 参考訳(メタデータ) (2022-01-31T20:02:22Z) - TorchGeo: deep learning with geospatial data [24.789143032205736]
我々はPyTorchディープラーニングエコシステムに地理空間データを統合するためのPythonライブラリであるTorchGeoを紹介した。
TorchGeoは、ベンチマークデータセット、一般的な地理空間データソースのための構成可能なデータセット、地理空間データのためのサンプル、マルチスペクトル画像で動作する変換を提供する。
トーチジオは、マルチスペクトル衛星画像のための事前訓練されたモデルを提供する最初の図書館でもある。
論文 参考訳(メタデータ) (2021-11-17T02:47:33Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
本稿では,機械学習モデルの学習のための衛星画像データセットの自動生成のための設計検討を行う。
本稿では,ニューラルネットワークの深層学習と評価の観点から直面する課題について論じる。
論文 参考訳(メタデータ) (2021-04-28T15:13:12Z) - PyODDS: An End-to-end Outlier Detection System with Automated Machine
Learning [55.32009000204512]
PyODDSは、データベースサポート付きアウトレイラ検出のための、エンドツーエンドのPythonシステムである。
具体的には,探索空間を外乱検出パイプラインで定義し,与えられた探索空間内で探索戦略を作成する。
また、データサイエンスや機械学習のバックグラウンドの有無に関わらず、統一されたインターフェイスと視覚化を提供する。
論文 参考訳(メタデータ) (2020-03-12T03:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。