論文の概要: Context-Enhanced Entity and Relation Embedding for Knowledge Graph
Completion
- arxiv url: http://arxiv.org/abs/2012.07011v1
- Date: Sun, 13 Dec 2020 09:20:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-09 12:50:52.707761
- Title: Context-Enhanced Entity and Relation Embedding for Knowledge Graph
Completion
- Title(参考訳): 知識グラフ補完のためのコンテキスト強化エンティティと関係埋め込み
- Authors: Ziyue Qiao, Zhiyuan Ning, Yi Du, Yuanchun Zhou
- Abstract要約: マルチホップにおけるエンティティコンテキストと関係コンテキストの効率的な集約を行うモデルAggrEを提案する。
実験の結果、AggrEは既存のモデルと競合していることがわかった。
- 参考スコア(独自算出の注目度): 2.580765958706854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most researches for knowledge graph completion learn representations of
entities and relations to predict missing links in incomplete knowledge graphs.
However, these methods fail to take full advantage of both the contextual
information of entity and relation. Here, we extract contexts of entities and
relations from the triplets which they compose. We propose a model named AggrE,
which conducts efficient aggregations respectively on entity context and
relation context in multi-hops, and learns context-enhanced entity and relation
embeddings for knowledge graph completion. The experiment results show that
AggrE is competitive to existing models.
- Abstract(参考訳): 知識グラフ完成のためのほとんどの研究は、不完全知識グラフの欠落リンクを予測するために実体と関係の表現を学ぶ。
しかし、これらの手法は、エンティティと関係のコンテキスト情報の両方を十分に活用できない。
ここでは、構成する三つ子から実体と関係の文脈を抽出する。
本稿では,マルチホップにおけるエンティティコンテキストと関係コンテキストをそれぞれ効率的に集約するAggrEというモデルを提案し,知識グラフ補完のためのコンテキスト強化エンティティと関係埋め込みを学習する。
実験の結果、AggrEは既存のモデルと競合していることがわかった。
関連論文リスト
- Inference over Unseen Entities, Relations and Literals on Knowledge Graphs [1.7474352892977463]
知識グラフ埋め込みモデルは、様々な課題に対処するために、トランスダクティブな設定でうまく適用されている。
本稿では、エンティティとリレーションのバイトペアエンコードされたサブワード単位のシーケンスから三重埋め込みを構築するための注意的バイトペアエンコーディング層(BytE)を提案する。
BytEは、知識グラフの埋め込みモデルに、エンティティやリレーションではなくサブワード単位の埋め込みを学習させるため、重み付けによる大規模な機能の再利用につながる。
論文 参考訳(メタデータ) (2024-10-09T10:20:54Z) - Relation-Aware Question Answering for Heterogeneous Knowledge Graphs [37.38138785470231]
既存の検索に基づくアプローチは、異なるホップにおける特定の関係に集中することで、この課題を解決する。
我々は,現在の関係表現を強化するために,ヘッドテールエンティティや関係間の意味的関係からの情報を利用することができないと主張している。
当社のアプローチは,従来の最先端技術よりも大きなパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2023-12-19T08:01:48Z) - ViRel: Unsupervised Visual Relations Discovery with Graph-level Analogy [65.5580334698777]
ViRelは、グラフレベルのアナロジーを用いた視覚関係の教師なし発見と学習のための方法である。
本研究では,関係分類において95%以上の精度を達成できることを示す。
さらに、より複雑な関係構造を持つ未確認タスクに一般化する。
論文 参考訳(メタデータ) (2022-07-04T16:56:45Z) - Learning Relation-Specific Representations for Few-shot Knowledge Graph
Completion [24.880078645503417]
本稿では,三重項のグラフコンテキストを利用して関係と実体のセマンティック情報を同時に取得する関係特化文脈学習フレームワークを提案する。
2つの公開データセットの実験結果は、RSCLが最先端のFKGC法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-22T11:45:48Z) - Is There More Pattern in Knowledge Graph? Exploring Proximity Pattern
for Knowledge Graph Embedding [13.17623081024394]
知識グラフにおけるそのような意味現象を近接パターンと呼ぶ。
元の知識グラフを用いて、我々は2つのパターンを深くマージするために、連鎖したcouPle-GNNアーキテクチャを設計する。
FB15k-237とWN18RRデータセットで評価され、CP-GNNは知識グラフ補完タスクの最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-10-02T03:50:42Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
複雑な知識グラフにおける実体と関係の表現を学習するためにHittを提案する。
実験結果から,Hittは複数リンク予測において最先端の新たな結果が得られることがわかった。
さらに,HittをBERTに統合する簡単なアプローチを提案し,その効果を2つのFreebaseファクトイド対応データセットで示す。
論文 参考訳(メタデータ) (2020-08-28T18:58:15Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
本稿では,知識グラフ補完のためのリレーショナルメッセージパッシング手法を提案する。
エッジ間でリレーショナルメッセージを反復的に送信し、近隣情報を集約する。
その結果,本手法は最先端の知識完成手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-17T03:33:41Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。