論文の概要: Inference over Unseen Entities, Relations and Literals on Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2410.06742v1
- Date: Wed, 9 Oct 2024 10:20:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 03:50:25.920968
- Title: Inference over Unseen Entities, Relations and Literals on Knowledge Graphs
- Title(参考訳): 知識グラフにおける未知の実体・関係・リテラルに関する推論
- Authors: Caglar Demir, N'Dah Jean Kouagou, Arnab Sharma, Axel-Cyrille Ngonga Ngomo,
- Abstract要約: 知識グラフ埋め込みモデルは、様々な課題に対処するために、トランスダクティブな設定でうまく適用されている。
本稿では、エンティティとリレーションのバイトペアエンコードされたサブワード単位のシーケンスから三重埋め込みを構築するための注意的バイトペアエンコーディング層(BytE)を提案する。
BytEは、知識グラフの埋め込みモデルに、エンティティやリレーションではなくサブワード単位の埋め込みを学習させるため、重み付けによる大規模な機能の再利用につながる。
- 参考スコア(独自算出の注目度): 1.7474352892977463
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, knowledge graph embedding models have been successfully applied in the transductive setting to tackle various challenging tasks including link prediction, and query answering. Yet, the transductive setting does not allow for reasoning over unseen entities, relations, let alone numerical or non-numerical literals. Although increasing efforts are put into exploring inductive scenarios, inference over unseen entities, relations, and literals has yet to come. This limitation prohibits the existing methods from handling real-world dynamic knowledge graphs involving heterogeneous information about the world. Here, we propose a remedy to this limitation. We propose the attentive byte-pair encoding layer (BytE) to construct a triple embedding from a sequence of byte-pair encoded subword units of entities and relations. Compared to the conventional setting, BytE leads to massive feature reuse via weight tying, since it forces a knowledge graph embedding model to learn embeddings for subword units instead of entities and relations directly. Consequently, the size of the embedding matrices are not anymore bound to the unique number of entities and relations of a knowledge graph. Experimental results show that BytE improves the link prediction performance of 4 knowledge graph embedding models on datasets where the syntactic representations of triples are semantically meaningful. However, benefits of training a knowledge graph embedding model with BytE dissipate on knowledge graphs where entities and relations are represented with plain numbers or URIs. We provide an open source implementation of BytE to foster reproducible research.
- Abstract(参考訳): 近年,リンク予測や問合せ応答など,様々な課題に対処するために,知識グラフの埋め込みモデルがトランスダクティブ・セッティングにうまく適用されている。
しかし、トランスダクティブ・セッティングは、数値的あるいは非数値的リテラルだけでなく、目に見えない実体、関係性についての推論を許さない。
帰納的シナリオの探求にますます努力が注がれているが、未確認のエンティティ、リレーション、リテラルに対する推論はまだ行われていない。
この制限は、既存の手法が世界の異種情報を含む実世界の動的知識グラフを扱うことを禁止している。
ここでは、この制限に対する対策を提案する。
本稿では、エンティティとリレーションのバイトペアエンコードされたサブワード単位のシーケンスから三重埋め込みを構築するための注意的バイトペアエンコーディング層(BytE)を提案する。
BytEは従来の設定と比較して、知識グラフの埋め込みモデルにエンティティやリレーションではなくサブワード単位の埋め込みを直接学習させるため、重み付けによる大規模な機能の再利用につながる。
したがって、埋め込み行列のサイズは、知識グラフのエンティティの数と関係に縛られない。
実験結果から,三重項の構文表現が意味論的に意味のあるデータセット上での知識グラフ埋め込みモデルのリンク予測性能がBytEにより向上することが示唆された。
しかし、BytEを用いた知識グラフ埋め込みモデルのトレーニングの利点は、エンティティと関係がプレーンな数やURIで表される知識グラフに拡散する。
再現可能な研究を促進するために,BytEのオープンソース実装を提供する。
関連論文リスト
- InGram: Inductive Knowledge Graph Embedding via Relation Graphs [16.005051393690792]
本稿では,インダクティブ・ナレッジGRAph eMbedding法であるInGramを提案する。
実験の結果,InGramは様々な帰納的学習シナリオにおいて,14種類の最先端手法より優れていた。
論文 参考訳(メタデータ) (2023-05-31T16:10:42Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
本稿では,特徴集合をグラフノードとして表現し,それらの関係を学習可能なエッジとして表現することで,特徴集合の依存関係を学習するデータ駆動型アプローチを提案する。
また,複数のビューから情報を動的に集約するために,より小さな潜在グラフを学習する新しい階層グラフオートエンコーダLEGATOを導入する。
論文 参考訳(メタデータ) (2023-05-31T10:36:10Z) - Entity-Agnostic Representation Learning for Parameter-Efficient
Knowledge Graph Embedding [30.7075844882004]
本稿では,知識グラフの埋め込みによる非効率なパラメータ記憶コストの問題に対処するエンティティに依存しない表現学習手法を提案する。
我々は、識別可能な情報をエンティティ埋め込みに変換するために、普遍的でエンティティに依存しないエンコーダを学習する。
実験の結果,EARLはパラメータが少なく,ベースラインよりもリンク予測タスクが優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T16:49:46Z) - RAILD: Towards Leveraging Relation Features for Inductive Link
Prediction In Knowledge Graphs [1.5469452301122175]
知識グラフの補完にはRAILD(Relation Aware Inductive Link PreDiction)が提案されている。
RAILDは、見えない実体と見えない関係の両方の表現を学ぶ。
論文 参考訳(メタデータ) (2022-11-21T12:35:30Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
我々は、異なるエンティティと関係型を区別することを学ぶ新しいエンティティ/リレーション埋め込み層を導入する。
知識グラフから抽出したトリプルを用いて、この追加埋め込み層を用いて言語モデルをさらに事前学習し、続いて標準微調整フェーズにより、ベンチマークデータセット上のリンク予測タスクに対して、新しい最先端のパフォーマンスが設定されることを示す。
論文 参考訳(メタデータ) (2022-11-04T20:38:12Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - Context-Enhanced Entity and Relation Embedding for Knowledge Graph
Completion [2.580765958706854]
マルチホップにおけるエンティティコンテキストと関係コンテキストの効率的な集約を行うモデルAggrEを提案する。
実験の結果、AggrEは既存のモデルと競合していることがわかった。
論文 参考訳(メタデータ) (2020-12-13T09:20:42Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
本稿では,知識グラフ補完のためのリレーショナルメッセージパッシング手法を提案する。
エッジ間でリレーショナルメッセージを反復的に送信し、近隣情報を集約する。
その結果,本手法は最先端の知識完成手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-17T03:33:41Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。