論文の概要: Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
Distribution Predictions
- arxiv url: http://arxiv.org/abs/2012.07197v2
- Date: Fri, 25 Dec 2020 15:03:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-08 14:26:21.052975
- Title: Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
Distribution Predictions
- Title(参考訳): Bayes DistNet - アルゴリズム実行時分布予測のためのロバストニューラルネットワーク
- Authors: Jake Tuero, Michael Buro
- Abstract要約: ランダム化アルゴリズムは制約満足度問題 (CSP) やブール満足度問題 (SAT) の多くの最先端の解法で用いられている。
従来の最先端の手法は、入力インスタンスが従う固定パラメトリック分布を直接予測しようとする。
この新モデルは,低観測環境下での堅牢な予測性能と,検閲された観測処理を実現する。
- 参考スコア(独自算出の注目度): 1.8275108630751844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomized algorithms are used in many state-of-the-art solvers for
constraint satisfaction problems (CSP) and Boolean satisfiability (SAT)
problems. For many of these problems, there is no single solver which will
dominate others. Having access to the underlying runtime distributions (RTD) of
these solvers can allow for better use of algorithm selection, algorithm
portfolios, and restart strategies. Previous state-of-the-art methods directly
try to predict a fixed parametric distribution that the input instance follows.
In this paper, we extend RTD prediction models into the Bayesian setting for
the first time. This new model achieves robust predictive performance in the
low observation setting, as well as handling censored observations. This
technique also allows for richer representations which cannot be achieved by
the classical models which restrict their output representations. Our model
outperforms the previous state-of-the-art model in settings in which data is
scarce, and can make use of censored data such as lower bound time estimates,
where that type of data would otherwise be discarded. It can also quantify its
uncertainty in its predictions, allowing for algorithm portfolio models to make
better informed decisions about which algorithm to run on a particular
instance.
- Abstract(参考訳): ランダム化アルゴリズムは制約満足度問題 (CSP) やブール満足度問題 (SAT) の多くの最先端の解法で用いられている。
これらの問題の多くは、他の問題を支配する単一の解法は存在しない。
これらのソルバの基盤となるランタイムディストリビューション(rtd)へのアクセスにより、アルゴリズムの選択、アルゴリズムポートフォリオ、再起動戦略をよりよく利用することができる。
従来の最先端手法は、入力インスタンスが従う固定パラメトリック分布を直接予測しようとする。
本稿では,rtd予測モデルをベイズ系に初めて拡張する。
この新モデルは,低観測環境下での堅牢な予測性能と,検閲された観測処理を実現する。
この技法はまた、出力表現を制限する古典モデルでは達成できないよりリッチな表現を可能にする。
我々のモデルは、データが不足している設定において、過去の最先端モデルよりも優れており、そのデータの種類が捨てられるような、低いバウンドタイム推定のような検閲されたデータを利用することができる。
また、予測における不確実性を定量化することで、アルゴリズムポートフォリオモデルによって、特定のインスタンス上でどのアルゴリズムを実行するかに関するより詳細な決定が可能になる。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Adaptive Sparse Gaussian Process [0.0]
これらの問題に対処できる最初の適応スパースガウスプロセス(GP)を提案する。
まず,変分スパースGPアルゴリズムを変形係数によって適応的に再構成する。
そこで我々は,新しいサンプルが到着するたびに,スパースGPモデルの単一誘導点と残りのモデルパラメータを同時に更新することを提案する。
論文 参考訳(メタデータ) (2023-02-20T21:34:36Z) - RF+clust for Leave-One-Problem-Out Performance Prediction [0.9281671380673306]
本稿では,LOPO(Left-one-problem-out)のパフォーマンス予測について検討する。
我々は、標準ランダムフォレスト(RF)モデル予測が性能値の重み付き平均値で校正することで改善できるかどうかを解析する。
論文 参考訳(メタデータ) (2023-01-23T16:14:59Z) - Deep Subspace Encoders for Nonlinear System Identification [0.0]
そこで本稿では,状態推定にトラッピング予測損失とサブスペースエンコーダを用いる手法を提案する。
軽度条件下では,提案手法は局所的に一貫性があり,最適化安定性が向上し,データ効率が向上することを示す。
論文 参考訳(メタデータ) (2022-10-26T16:04:38Z) - Interpretations Steered Network Pruning via Amortized Inferred Saliency
Maps [85.49020931411825]
限られたリソースを持つエッジデバイスにこれらのモデルをデプロイするには、畳み込みニューラルネットワーク(CNN)圧縮が不可欠である。
本稿では,新しい視点からチャネルプルーニング問題に対処するために,モデルの解釈を活用して,プルーニング過程を解析する手法を提案する。
本研究では,実時間スムーズなスムーズなスムーズなスムーズなマスク予測を行うセレクタモデルを導入することで,この問題に対処する。
論文 参考訳(メタデータ) (2022-09-07T01:12:11Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
非論理的スケジューリングでは、優先度不明な処理条件でジョブをスケジューリングするためのオンライン戦略を見つけることが課題である。
我々はこのよく研究された問題を、アルゴリズム設計に(信頼できない)予測を統合する、最近人気の高い学習強化された設定で再検討する。
これらの予測には所望の特性があり, 高い性能保証を有するアルゴリズムと同様に, 自然な誤差測定が可能であることを示す。
論文 参考訳(メタデータ) (2022-02-21T13:18:11Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
GPモデルの推論は、セミアモタイズ法よりもはるかに高速な1つのフィードフォワードパスによって行われる。
提案手法は,複数のベンチマークデータセットの最先端データよりも高い確率でテストデータが得られることを示す。
論文 参考訳(メタデータ) (2021-02-05T13:01:12Z) - Neural Model-based Optimization with Right-Censored Observations [42.530925002607376]
ニューラルネットワーク(NN)は、モデルベースの最適化手順のコアでうまく機能することが実証されている。
トレーニングされた回帰モデルは,いくつかのベースラインよりも優れた予測品質が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T07:32:30Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。