Effect of Word Embedding Models on Hate and Offensive Speech Detection
- URL: http://arxiv.org/abs/2012.07534v1
- Date: Mon, 23 Nov 2020 02:43:45 GMT
- Title: Effect of Word Embedding Models on Hate and Offensive Speech Detection
- Authors: Safa Alsafari, Samira Sadaoui, Malek Mouhoub
- Abstract summary: We investigate the impact of both word embedding models and neural network architectures on the predictive accuracy.
We first train several word embedding models on a large-scale unlabelled Arabic text corpus.
For each detection task, we train several neural network classifiers using the pre-trained word embedding models.
This task yields a large number of various learned models, which allows conducting an exhaustive comparison.
- Score: 1.7403133838762446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have been adopted successfully in hate speech detection
problems. Nevertheless, the effect of the word embedding models on the neural
network's performance has not been appropriately examined in the literature. In
our study, through different detection tasks, 2-class, 3-class, and 6-class
classification, we investigate the impact of both word embedding models and
neural network architectures on the predictive accuracy. Our focus is on the
Arabic language. We first train several word embedding models on a large-scale
unlabelled Arabic text corpus. Next, based on a dataset of Arabic hate and
offensive speech, for each detection task, we train several neural network
classifiers using the pre-trained word embedding models. This task yields a
large number of various learned models, which allows conducting an exhaustive
comparison. The empirical analysis demonstrates, on the one hand, the
superiority of the skip-gram models and, on the other hand, the superiority of
the CNN network across the three detection tasks.
Related papers
- Deception Detection from Linguistic and Physiological Data Streams Using Bimodal Convolutional Neural Networks [19.639533220155965]
This paper explores the application of convolutional neural networks for the purpose of multimodal deception detection.
We use a dataset built by interviewing 104 subjects about two topics, with one truthful and one falsified response from each subject about each topic.
arXiv Detail & Related papers (2023-11-18T02:44:33Z) - Multi-label Text Classification using GloVe and Neural Network Models [0.27195102129094995]
Existing solutions include traditional machine learning and deep neural networks for predictions.
This paper proposes a method utilizing the bag-of-words model approach based on the GloVe model and the CNN-BiLSTM network.
The method achieves an accuracy rate of 87.26% on the test set and an F1 score of 0.8737, showcasing promising results.
arXiv Detail & Related papers (2023-10-25T01:30:26Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
Humans can explain their predictions using succinct and intuitive descriptions.
We show that a vision model whose feature representations are text can effectively classify ImageNet images.
arXiv Detail & Related papers (2023-06-29T00:24:42Z) - SLCNN: Sentence-Level Convolutional Neural Network for Text
Classification [0.0]
Convolutional neural network (CNN) has shown remarkable success in the task of text classification.
New baseline models have been studied for text classification using CNN.
Results have shown that the proposed models have better performance, particularly in the longer documents.
arXiv Detail & Related papers (2023-01-27T13:16:02Z) - Multitasking Models are Robust to Structural Failure: A Neural Model for
Bilingual Cognitive Reserve [78.3500985535601]
We find a surprising connection between multitask learning and robustness to neuron failures.
Our experiments show that bilingual language models retain higher performance under various neuron perturbations.
We provide a theoretical justification for this robustness by mathematically analyzing linear representation learning.
arXiv Detail & Related papers (2022-10-20T22:23:27Z) - Panning for gold: Lessons learned from the platform-agnostic automated
detection of political content in textual data [48.7576911714538]
We discuss how these techniques can be used to detect political content across different platforms.
We compare the performance of three groups of detection techniques relying on dictionaries, supervised machine learning, or neural networks.
Our results show the limited impact of preprocessing on model performance, with the best results for less noisy data being achieved by neural network- and machine-learning-based models.
arXiv Detail & Related papers (2022-07-01T15:23:23Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
Morphologically rich languages pose difficulties to machine translation.
A large amount of differently inflected word surface forms entails a larger vocabulary.
Some inflected forms of infrequent terms typically do not appear in the training corpus.
Linguistic agreement requires the system to correctly match the grammatical categories between inflected word forms in the output sentence.
arXiv Detail & Related papers (2022-03-25T10:13:20Z) - Khmer Text Classification Using Word Embedding and Neural Networks [0.0]
We discuss various classification approaches for Khmer text.
A Khmer word embedding model is trained on a 30-million-Khmer-word corpus to construct word vector representations.
We evaluate the performance of different approaches on a news article dataset for both multi-class and multi-label text classification tasks.
arXiv Detail & Related papers (2021-12-13T15:57:32Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - On the Effects of Using word2vec Representations in Neural Networks for
Dialogue Act Recognition [0.6767885381740952]
We propose a new deep neural network that explores recurrent models to capture word sequences within sentences.
We validate this model on three languages: English, French and Czech.
arXiv Detail & Related papers (2020-10-22T07:21:17Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
We studied whether a modern artificial neural network trained with "deep learning" methods mimics a central aspect of human sentence processing.
Although the network was solely trained to predict the next word in a large corpus, analysis showed the emergence of specialized units that successfully handled local and long-distance syntactic agreement.
We tested the model's predictions in a behavioral experiment where humans detected violations in number agreement in sentences with systematic variations in the singular/plural status of multiple nouns.
arXiv Detail & Related papers (2020-06-19T12:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.