FlowMOT: 3D Multi-Object Tracking by Scene Flow Association
- URL: http://arxiv.org/abs/2012.07541v3
- Date: Fri, 5 Mar 2021 10:36:56 GMT
- Title: FlowMOT: 3D Multi-Object Tracking by Scene Flow Association
- Authors: Guangyao Zhai, Xin Kong, Jinhao Cui, Yong Liu, and Zhen Yang
- Abstract summary: We propose a LiDAR-based 3D MOT framework named FlowMOT, which integrates point-wise motion information with the traditional matching algorithm.
Our approach outperforms recent end-to-end methods and achieves competitive performance with the state-of-the-art filter-based method.
- Score: 9.480272707157747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most end-to-end Multi-Object Tracking (MOT) methods face the problems of low
accuracy and poor generalization ability. Although traditional filter-based
methods can achieve better results, they are difficult to be endowed with
optimal hyperparameters and often fail in varying scenarios. To alleviate these
drawbacks, we propose a LiDAR-based 3D MOT framework named FlowMOT, which
integrates point-wise motion information with the traditional matching
algorithm, enhancing the robustness of the motion prediction. We firstly
utilize a scene flow estimation network to obtain implicit motion information
between two adjacent frames and calculate the predicted detection for each old
tracklet in the previous frame. Then we use Hungarian algorithm to generate
optimal matching relations with the ID propagation strategy to finish the
tracking task. Experiments on KITTI MOT dataset show that our approach
outperforms recent end-to-end methods and achieves competitive performance with
the state-of-the-art filter-based method. In addition, ours can work steadily
in the various-speed scenarios where the filter-based methods may fail.
Related papers
- Dual-frame Fluid Motion Estimation with Test-time Optimization and Zero-divergence Loss [9.287932323337163]
3D particle tracking velocimetry (PTV) is a key technique for analyzing turbulent flow.
Deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation.
We introduce a new method that is completely self-supervised and notably outperforms its fully-supervised counterparts.
arXiv Detail & Related papers (2024-10-15T18:00:00Z) - Beyond Kalman Filters: Deep Learning-Based Filters for Improved Object
Tracking [3.5693768338940304]
We propose two innovative data-driven filtering methods for tracking-by-detection systems.
The first method employs a Bayesian filter with a trainable motion model to predict an object's future location.
The second method, an end-to-end trainable filter, goes a step further by learning to correct detector errors.
arXiv Detail & Related papers (2024-02-15T10:47:44Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
We propose DNMOT, an end-to-end trainable DeNoising Transformer for multiple object tracking.
Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture.
We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2023-09-09T04:40:01Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - DetFlowTrack: 3D Multi-object Tracking based on Simultaneous
Optimization of Object Detection and Scene Flow Estimation [23.305159598648924]
We propose a 3D MOT framework based on simultaneous optimization of object detection and scene flow estimation.
For more accurate scene flow label especially in the case of motion with rotation, a box-transformation-based scene flow ground truth calculation method is proposed.
Experimental results on the KITTI MOT dataset show competitive results over the state-of-the-arts and the robustness under extreme motion with rotation.
arXiv Detail & Related papers (2022-03-04T07:06:47Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z) - FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation [87.74617110803189]
Estimating the 3D motion of points in a scene, known as scene flow, is a core problem in computer vision.
We present a recurrent architecture that learns a single step of an unrolled iterative alignment procedure for refining scene flow predictions.
arXiv Detail & Related papers (2020-11-19T23:23:48Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.