DetFlowTrack: 3D Multi-object Tracking based on Simultaneous
Optimization of Object Detection and Scene Flow Estimation
- URL: http://arxiv.org/abs/2203.02157v1
- Date: Fri, 4 Mar 2022 07:06:47 GMT
- Title: DetFlowTrack: 3D Multi-object Tracking based on Simultaneous
Optimization of Object Detection and Scene Flow Estimation
- Authors: Yueling Shen and Guangming Wang and Hesheng Wang
- Abstract summary: We propose a 3D MOT framework based on simultaneous optimization of object detection and scene flow estimation.
For more accurate scene flow label especially in the case of motion with rotation, a box-transformation-based scene flow ground truth calculation method is proposed.
Experimental results on the KITTI MOT dataset show competitive results over the state-of-the-arts and the robustness under extreme motion with rotation.
- Score: 23.305159598648924
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D Multi-Object Tracking (MOT) is an important part of the unmanned vehicle
perception module. Most methods optimize object detection and data association
independently. These methods make the network structure complicated and limit
the improvement of MOT accuracy. we proposed a 3D MOT framework based on
simultaneous optimization of object detection and scene flow estimation. In the
framework, a detection-guidance scene flow module is proposed to relieve the
problem of incorrect inter-frame assocation. For more accurate scene flow label
especially in the case of motion with rotation, a box-transformation-based
scene flow ground truth calculation method is proposed. Experimental results on
the KITTI MOT dataset show competitive results over the state-of-the-arts and
the robustness under extreme motion with rotation.
Related papers
- Delving into Motion-Aware Matching for Monocular 3D Object Tracking [81.68608983602581]
We find that the motion cue of objects along different time frames is critical in 3D multi-object tracking.
We propose MoMA-M3T, a framework that mainly consists of three motion-aware components.
We conduct extensive experiments on the nuScenes and KITTI datasets to demonstrate our MoMA-M3T achieves competitive performance against state-of-the-art methods.
arXiv Detail & Related papers (2023-08-22T17:53:58Z) - CAMO-MOT: Combined Appearance-Motion Optimization for 3D Multi-Object
Tracking with Camera-LiDAR Fusion [34.42289908350286]
3D Multi-object tracking (MOT) ensures consistency during continuous dynamic detection.
It can be challenging to accurately track the irregular motion of objects for LiDAR-based methods.
We propose a novel camera-LiDAR fusion 3D MOT framework based on the Combined Appearance-Motion Optimization (CAMO-MOT)
arXiv Detail & Related papers (2022-09-06T14:41:38Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association [8.34219107351442]
This paper proposes a robust camera-LiDAR fusion-based MOT method that achieves a good trade-off between accuracy and speed.
Our proposed method presents obvious advantages over the state-of-the-art MOT methods in terms of both tracking accuracy and processing speed.
arXiv Detail & Related papers (2022-02-24T13:36:29Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
We propose a modular network, motivated by a geometric analysis of what independent object motions can be recovered from an egomotion field.
It takes two consecutive frames as input and predicts segmentation masks for the background and multiple rigidly moving objects, which are then parameterized by 3D rigid transformations.
Our method achieves state-of-the-art performance for rigid motion segmentation on KITTI and Sintel.
arXiv Detail & Related papers (2021-01-11T04:20:30Z) - FlowMOT: 3D Multi-Object Tracking by Scene Flow Association [9.480272707157747]
We propose a LiDAR-based 3D MOT framework named FlowMOT, which integrates point-wise motion information with the traditional matching algorithm.
Our approach outperforms recent end-to-end methods and achieves competitive performance with the state-of-the-art filter-based method.
arXiv Detail & Related papers (2020-12-14T14:03:48Z) - Tracking from Patterns: Learning Corresponding Patterns in Point Clouds
for 3D Object Tracking [34.40019455462043]
We propose to learn 3D object correspondences from temporal point cloud data and infer the motion information from correspondence patterns.
Our method exceeds the existing 3D tracking methods on both the KITTI and larger scale Nuscenes dataset.
arXiv Detail & Related papers (2020-10-20T06:07:20Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Robust Ego and Object 6-DoF Motion Estimation and Tracking [5.162070820801102]
This paper proposes a robust solution to achieve accurate estimation and consistent track-ability for dynamic multi-body visual odometry.
A compact and effective framework is proposed leveraging recent advances in semantic instance-level segmentation and accurate optical flow estimation.
A novel formulation, jointly optimizing SE(3) motion and optical flow is introduced that improves the quality of the tracked points and the motion estimation accuracy.
arXiv Detail & Related papers (2020-07-28T05:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.