Quantum channels, complex Stiefel manifolds, and optimization
- URL: http://arxiv.org/abs/2408.09820v1
- Date: Mon, 19 Aug 2024 09:15:54 GMT
- Title: Quantum channels, complex Stiefel manifolds, and optimization
- Authors: Ivan Russkikh, Boris Volkov, Alexander Pechen,
- Abstract summary: We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
- Score: 45.9982965995401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most general dynamics of an open quantum system is commonly represented by a quantum channel, which is a completely positive trace-preserving map (CPTP or Kraus map). Well-known are the representations of quantum channels by Choi matrices and by Kraus operator-sum representation (OSR). As was shown before, one can use Kraus OSR to parameterize quantum channels by points of a suitable quotient under the action of the unitary group of some complex Stiefel manifold. In this work, we establish a continuity relation (homeomorphism) between the topological space of quantum channels and the quotient of the complex Stiefel manifold. Then the metric on the set of quantum channels induced by the Riemannian metric on the Stiefel manifold is defined. The established relation can be applied to various quantum optimization problems. As an example, we apply it to the analysis of extrema points for a wide variety of quantum control objective functionals defined on the complex Stiefel manifolds, including mean value, generation of quantum gates, thermodynamic quantities involving entropy, etc.
Related papers
- Relational Quantum Geometry [0.0]
We identify non-commutative or quantum geometry as a mathematical framework which unifies three objects.
We first provide a rigorous account of the extended phase space, and demonstrate that it can be regarded as a classical principal bundle with a Poisson manifold base.
We conclude that the quantum orbifold is equivalent to the G-framed algebra proposed in prior work.
arXiv Detail & Related papers (2024-10-14T19:29:27Z) - Extreme quantum states and processes, and extreme points of general
spectrahedra in finite dimensional algebras [0.27195102129094995]
Convex sets of quantum states and processes play a central role in quantum theory and quantum information.
Many important examples of convex sets in quantum theory are spectrahedra, that is, sets of positive operators subject to affine constraints.
This contribution provides a characterisation of the extreme points of general spectrahedra, and bounds on the ranks of the corresponding operators.
arXiv Detail & Related papers (2023-11-18T01:31:16Z) - Ergodic and mixing quantum channels: From two-qubit to many-body quantum systems [1.9799527196428246]
We study the ergodic theory of quantum channels by characterizing different levels of ergodic hierarchy from integrable to mixing.
We also study interacting many-body quantum systems that include the famous Sachdev-Ye-Kitaev (SYK) model.
arXiv Detail & Related papers (2023-10-04T11:30:57Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Computation of Phase Transition in Interacting Scalar Quantum
Field Theory [0.0]
It has been demonstrated that the critical point of the phase transition in scalar quantum field theory can be approximated via a Gaussian Effective Potential (GEP)
We perform quantum computations with various lattice sizes and obtain evidence of a transition from a symmetric to a symmetry-broken phase.
We implement the ten-site case on IBM quantum hardware using the Variational Quantum Eigensolver (VQE) algorithm to minimize the GEP.
arXiv Detail & Related papers (2023-03-04T14:11:37Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum representation of finite groups [0.0]
The concept of quantum representation of finite groups (QRFG) has been a fundamental aspect of quantum computing for quite some time.
We provide a formal definition of this concept using both group theory and differential geometry.
Our work proves the existence of a quantum representation for any finite group and outlines two methods for translating each generator of the group into a quantum circuit.
arXiv Detail & Related papers (2022-09-29T18:01:03Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.