Improving Adversarial Robustness via Probabilistically Compact Loss with
Logit Constraints
- URL: http://arxiv.org/abs/2012.07688v1
- Date: Mon, 14 Dec 2020 16:40:53 GMT
- Title: Improving Adversarial Robustness via Probabilistically Compact Loss with
Logit Constraints
- Authors: Xin Li, Xiangrui Li, Deng Pan, Dongxiao Zhu
- Abstract summary: Convolutional neural networks (CNNs) have achieved state-of-the-art performance on various tasks in computer vision.
Recent studies demonstrate that these models are vulnerable to carefully crafted adversarial samples and suffer from a significant performance drop when predicting them.
Here we offer a unique insight into the predictive behavior of CNNs that they tend to misclassify adversarial samples into the most probable false classes.
We propose a new Probabilistically Compact (PC) loss with logit constraints which can be used as a drop-in replacement for cross-entropy (CE) loss to improve CNN'
- Score: 19.766374145321528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) have achieved state-of-the-art
performance on various tasks in computer vision. However, recent studies
demonstrate that these models are vulnerable to carefully crafted adversarial
samples and suffer from a significant performance drop when predicting them.
Many methods have been proposed to improve adversarial robustness (e.g.,
adversarial training and new loss functions to learn adversarially robust
feature representations). Here we offer a unique insight into the predictive
behavior of CNNs that they tend to misclassify adversarial samples into the
most probable false classes. This inspires us to propose a new
Probabilistically Compact (PC) loss with logit constraints which can be used as
a drop-in replacement for cross-entropy (CE) loss to improve CNN's adversarial
robustness. Specifically, PC loss enlarges the probability gaps between true
class and false classes meanwhile the logit constraints prevent the gaps from
being melted by a small perturbation. We extensively compare our method with
the state-of-the-art using large scale datasets under both white-box and
black-box attacks to demonstrate its effectiveness. The source codes are
available from the following url: https://github.com/xinli0928/PC-LC.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
Convolutional neural networks (CNN) define the state-of-the-art solution on many perceptual tasks.
Current CNN approaches largely remain vulnerable against adversarial perturbations of the input that have been crafted specifically to fool the system.
We propose a simple and light-weight detector, which leverages recent findings on the relation between networks' local intrinsic dimensionality (LID) and adversarial attacks.
arXiv Detail & Related papers (2022-12-13T17:51:32Z) - Towards Practical Control of Singular Values of Convolutional Layers [65.25070864775793]
Convolutional neural networks (CNNs) are easy to train, but their essential properties, such as generalization error and adversarial robustness, are hard to control.
Recent research demonstrated that singular values of convolutional layers significantly affect such elusive properties.
We offer a principled approach to alleviating constraints of the prior art at the expense of an insignificant reduction in layer expressivity.
arXiv Detail & Related papers (2022-11-24T19:09:44Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Understanding Square Loss in Training Overparametrized Neural Network
Classifiers [31.319145959402462]
We contribute to the theoretical understanding of square loss in classification by systematically investigating how it performs for overparametrized neural networks.
We consider two cases, according to whether classes are separable or not. In the general non-separable case, fast convergence rate is established for both misclassification rate and calibration error.
The resulting margin is proven to be lower bounded away from zero, providing theoretical guarantees for robustness.
arXiv Detail & Related papers (2021-12-07T12:12:30Z) - Mixing between the Cross Entropy and the Expectation Loss Terms [89.30385901335323]
Cross entropy loss tends to focus on hard to classify samples during training.
We show that adding to the optimization goal the expectation loss helps the network to achieve better accuracy.
Our experiments show that the new training protocol improves performance across a diverse set of classification domains.
arXiv Detail & Related papers (2021-09-12T23:14:06Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN) models have vulnerabilities related to security concerns.
Data poisoning-enabled perturbation attacks are complex adversarial ones that inject false data into models.
We propose an attack-agnostic-based defense method for mitigating their influence.
arXiv Detail & Related papers (2020-12-08T21:25:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.