Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
- URL: http://arxiv.org/abs/2405.11067v3
- Date: Mon, 31 Mar 2025 13:04:03 GMT
- Title: Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
- Authors: Nisha L. Raichur, Lucas Heublein, Tobias Feigl, Alexander RĂ¼gamer, Christopher Mutschler, Felix Ott,
- Abstract summary: This paper proposes a method to learn an effective representation between previous and newly encountered class prototypes.<n>We introduce a contrastive loss that incorporates novel classes into the latent representation by reducing intra-class and increasing inter-class distance.
- Score: 42.14439854721613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The primary objective of methods in continual learning is to learn tasks in a sequential manner over time (sometimes from a stream of data), while mitigating the detrimental phenomenon of catastrophic forgetting. This paper proposes a method to learn an effective representation between previous and newly encountered class prototypes. We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL), tailored specifically for class-incremental learning scenarios. We introduce a contrastive loss that incorporates novel classes into the latent representation by reducing intra-class and increasing inter-class distance. Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique. Experimental results conducted on the CIFAR-10, CIFAR-100, and ImageNet100 datasets for image classification and images of a GNSS-based dataset for interference classification validate the efficacy of our method, showcasing its superiority over existing state-of-the-art approaches. Git: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss/gnss_class_incremental_learning
Related papers
- A Contrastive Symmetric Forward-Forward Algorithm (SFFA) for Continual Learning Tasks [7.345136916791223]
Forward-Forward Algorithm (FFA) has recently gained momentum as an alternative to the conventional back-propagation algorithm for neural network learning.
This work proposes the Symmetric Forward-Forward Algorithm (SFFA), a novel modification of the original FFA which partitions each layer into positive and negative neurons.
arXiv Detail & Related papers (2024-09-11T16:21:44Z) - SCoRe: Submodular Combinatorial Representation Learning [12.874523233023453]
We introduce the SCoRe (Submodular Combinatorial Representation) framework, a novel approach in representation learning.
SCoRe provides a new viewpoint to representation learning, by introducing a family of loss functions based on set-based submodular information measures.
arXiv Detail & Related papers (2023-09-29T22:09:07Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Prototypical quadruplet for few-shot class incremental learning [24.814045065163135]
We propose a novel method that improves classification robustness by identifying a better embedding space using an improved contrasting loss.
Our approach retains previously acquired knowledge in the embedding space, even when trained with new classes.
We demonstrate the effectiveness of our method by showing that the embedding space remains intact after training the model with new classes and outperforms existing state-of-the-art algorithms in terms of accuracy across different sessions.
arXiv Detail & Related papers (2022-11-05T17:19:14Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Unsupervised Class-Incremental Learning Through Confusion [0.4604003661048266]
We introduce a novelty detection method that leverages network confusion caused by training incoming data as a new class.
We found that incorporating a class-imbalance during this detection method substantially enhances performance.
arXiv Detail & Related papers (2021-04-09T15:58:43Z) - Contrastive Learning based Hybrid Networks for Long-Tailed Image
Classification [31.647639786095993]
We propose a novel hybrid network structure composed of a supervised contrastive loss to learn image representations and a cross-entropy loss to learn classifiers.
Experiments on three long-tailed classification datasets demonstrate the advantage of the proposed contrastive learning based hybrid networks in long-tailed classification.
arXiv Detail & Related papers (2021-03-26T05:22:36Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Class-incremental Learning with Rectified Feature-Graph Preservation [24.098892115785066]
A central theme of this paper is to learn new classes that arrive in sequential phases over time.
We propose a weighted-Euclidean regularization for old knowledge preservation.
We show how it can work with binary cross-entropy to increase class separation for effective learning of new classes.
arXiv Detail & Related papers (2020-12-15T07:26:04Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
arXiv Detail & Related papers (2020-05-25T18:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.