Pedestrian Intention and Trajectory Prediction in Unstructured Traffic Using IDD-PeD
- URL: http://arxiv.org/abs/2506.22111v1
- Date: Fri, 27 Jun 2025 10:41:18 GMT
- Title: Pedestrian Intention and Trajectory Prediction in Unstructured Traffic Using IDD-PeD
- Authors: Ruthvik Bokkasam, Shankar Gangisetty, A. H. Abdul Hafez, C. V. Jawahar,
- Abstract summary: We introduce an Indian driving pedestrian dataset designed to address the complexities of modeling pedestrian behavior in unstructured environments.<n>The dataset provides high-level and detailed low-level comprehensive annotations focused on pedestrians requiring the ego-vehicle's attention.
- Score: 26.011293248078797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancements in autonomous driving, accurately predicting pedestrian behavior has become essential for ensuring safety in complex and unpredictable traffic conditions. The growing interest in this challenge highlights the need for comprehensive datasets that capture unstructured environments, enabling the development of more robust prediction models to enhance pedestrian safety and vehicle navigation. In this paper, we introduce an Indian driving pedestrian dataset designed to address the complexities of modeling pedestrian behavior in unstructured environments, such as illumination changes, occlusion of pedestrians, unsignalized scene types and vehicle-pedestrian interactions. The dataset provides high-level and detailed low-level comprehensive annotations focused on pedestrians requiring the ego-vehicle's attention. Evaluation of the state-of-the-art intention prediction methods on our dataset shows a significant performance drop of up to $\mathbf{15\%}$, while trajectory prediction methods underperform with an increase of up to $\mathbf{1208}$ MSE, defeating standard pedestrian datasets. Additionally, we present exhaustive quantitative and qualitative analysis of intention and trajectory baselines. We believe that our dataset will open new challenges for the pedestrian behavior research community to build robust models. Project Page: https://cvit.iiit.ac.in/research/projects/cvit-projects/iddped
Related papers
- Traffic-Aware Pedestrian Intention Prediction [2.5240171181791276]
This paper presents a Traffic-Aware Spatio-Temporal Graph Convolutional Network (TA-STGCN) that integrates traffic signs and their states into pedestrian intention prediction.<n>Our approach introduces the integration of dynamic traffic signal states and bounding box size as key features, allowing the model to capture both spatial and temporal dependencies in complex urban environments.
arXiv Detail & Related papers (2025-07-16T17:20:36Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.<n>To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Navigating Uncertainty: The Role of Short-Term Trajectory Prediction in
Autonomous Vehicle Safety [3.3659635625913564]
We have developed a dataset for short-term trajectory prediction tasks using the CARLA simulator.
This dataset is extensive and incorporates what is considered complex scenarios - pedestrians crossing the road, vehicles overtaking.
An end-to-end short-term trajectory prediction model using convolutional neural networks (CNN) and long short-term memory (LSTM) networks has also been developed.
arXiv Detail & Related papers (2023-07-11T14:28:33Z) - Context-empowered Visual Attention Prediction in Pedestrian Scenarios [0.0]
We present Context-SalNET, a novel encoder-decoder architecture that addresses three key challenges of visual attention prediction in pedestrians.
First, Context-SalNET explicitly models the context factors urgency and safety preference in the latent space of the encoder-decoder model.
Second, we propose the exponentially weighted mean squared error loss (ew-MSE) that is able to better cope with the fact that only a small part of the ground truth saliency maps consist of non-zero entries.
arXiv Detail & Related papers (2022-10-30T19:38:17Z) - Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models [76.32775745488073]
We present a novel dataset and modeling framework designed to study motion planning in understructured environments.<n>We demonstrate that a consensus-based modeling approach can effectively explain the emergence of priority orders observed in our dataset.
arXiv Detail & Related papers (2022-09-19T05:06:57Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
In traffic scenes, when encountering with oncoming people, pedestrians may make sudden turns or stop immediately.
To predict such unpredictable trajectories, we can gain insights into the interaction between pedestrians.
We present a novel generative method named Spatial Interaction Transformer (SIT), which learns the correlation of pedestrian trajectories through attention mechanisms.
arXiv Detail & Related papers (2021-12-13T13:08:04Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
We analyze the requirements on pedestrian behavior prediction for automated driving via a system-level approach.
Based on human driving behavior we derive appropriate reaction patterns of an automated vehicle.
We present a pedestrian prediction model based on a Variational Conditional Auto-Encoder which incorporates multiple contextual cues.
arXiv Detail & Related papers (2020-12-15T16:52:49Z) - PePScenes: A Novel Dataset and Baseline for Pedestrian Action Prediction
in 3D [10.580548257913843]
We propose a new pedestrian action prediction dataset created by adding per-frame 2D/3D bounding box and behavioral annotations to nuScenes.
In addition, we propose a hybrid neural network architecture that incorporates various data modalities for predicting pedestrian crossing action.
arXiv Detail & Related papers (2020-12-14T18:13:44Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.