CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization
- URL: http://arxiv.org/abs/2104.04015v1
- Date: Thu, 8 Apr 2021 19:04:55 GMT
- Title: CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization
- Authors: Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, Tomas Pfister
- Abstract summary: We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
- Score: 59.719925639875036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We aim at constructing a high performance model for defect detection that
detects unknown anomalous patterns of an image without anomalous data. To this
end, we propose a two-stage framework for building anomaly detectors using
normal training data only. We first learn self-supervised deep representations
and then build a generative one-class classifier on learned representations. We
learn representations by classifying normal data from the CutPaste, a simple
data augmentation strategy that cuts an image patch and pastes at a random
location of a large image. Our empirical study on MVTec anomaly detection
dataset demonstrates the proposed algorithm is general to be able to detect
various types of real-world defects. We bring the improvement upon previous
arts by 3.1 AUCs when learning representations from scratch. By transfer
learning on pretrained representations on ImageNet, we achieve a new
state-of-theart 96.6 AUC. Lastly, we extend the framework to learn and extract
representations from patches to allow localizing defective areas without
annotations during training.
Related papers
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance.
In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Anomaly Detection by Adapting a pre-trained Vision Language Model [48.225404732089515]
We present a unified framework named CLIP-ADA for Anomaly Detection by Adapting a pre-trained CLIP model.
We introduce the learnable prompt and propose to associate it with abnormal patterns through self-supervised learning.
We achieve the state-of-the-art 97.5/55.6 and 89.3/33.1 on MVTec-AD and VisA for anomaly detection and localization.
arXiv Detail & Related papers (2024-03-14T15:35:07Z) - CRADL: Contrastive Representations for Unsupervised Anomaly Detection
and Localization [2.8659934481869715]
Unsupervised anomaly detection in medical imaging aims to detect and localize arbitrary anomalies without requiring anomalous data during training.
Most current state-of-the-art methods use latent variable generative models operating directly on the images.
We propose CRADL whose core idea is to model the distribution of normal samples directly in the low-dimensional representation space of an encoder trained with a contrastive pretext-task.
arXiv Detail & Related papers (2023-01-05T16:07:49Z) - Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks [6.393288885927437]
We propose Vision Transformer based (VIT) unsupervised anomaly detection network.
It utilizes a hierarchical task learning and human experience to enhance its interpretability.
Our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods.
arXiv Detail & Related papers (2022-07-20T10:09:53Z) - PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization [57.37911115888587]
We introduce a regularizer for the variational modeling of inverse problems in imaging based on normalizing flows.
Our regularizer, called patchNR, involves a normalizing flow learned on patches of very few images.
arXiv Detail & Related papers (2022-05-24T12:14:26Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
We propose a vision transformer-based encoder-decoder model, named AnoViT, to reflect normal information by additionally learning the global relationship between image patches.
The proposed model performed better than the convolution-based model on three benchmark datasets.
arXiv Detail & Related papers (2022-03-21T09:01:37Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z) - Y-GAN: Learning Dual Data Representations for Efficient Anomaly
Detection [0.0]
We propose a novel reconstruction-based model for anomaly detection, called Y-GAN.
The model consists of a Y-shaped auto-encoder and represents images in two separate latent spaces.
arXiv Detail & Related papers (2021-09-28T20:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.