論文の概要: Improving model calibration with accuracy versus uncertainty
optimization
- arxiv url: http://arxiv.org/abs/2012.07923v1
- Date: Mon, 14 Dec 2020 20:19:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-08 14:22:46.318611
- Title: Improving model calibration with accuracy versus uncertainty
optimization
- Title(参考訳): 精度と不確かさの最適化によるモデル校正の改善
- Authors: Ranganath Krishnan, Omesh Tickoo
- Abstract要約: 適切に校正されたモデルは、その予測が確実であるときに正確であり、不正確な場合に高い不確実性を示すべきである。
精度と不確実性の関係を不確実性校正のアンカーとして活用する最適化手法を提案する。
平均場変動推定によるアプローチの実証と最先端手法との比較を行った。
- 参考スコア(独自算出の注目度): 17.056768055368384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining reliable and accurate quantification of uncertainty estimates from
deep neural networks is important in safety-critical applications. A
well-calibrated model should be accurate when it is certain about its
prediction and indicate high uncertainty when it is likely to be inaccurate.
Uncertainty calibration is a challenging problem as there is no ground truth
available for uncertainty estimates. We propose an optimization method that
leverages the relationship between accuracy and uncertainty as an anchor for
uncertainty calibration. We introduce a differentiable accuracy versus
uncertainty calibration (AvUC) loss function that allows a model to learn to
provide well-calibrated uncertainties, in addition to improved accuracy. We
also demonstrate the same methodology can be extended to post-hoc uncertainty
calibration on pretrained models. We illustrate our approach with mean-field
stochastic variational inference and compare with state-of-the-art methods.
Extensive experiments demonstrate our approach yields better model calibration
than existing methods on large-scale image classification tasks under
distributional shift.
- Abstract(参考訳): 深層ニューラルネットワークによる不確実性推定の信頼性と精度の定量化は,安全性クリティカルな応用において重要である。
適切に校正されたモデルは、その予測が確実であるときに正確であり、不正確な場合に高い不確実性を示すべきである。
不確実性校正は、不確実性推定の根拠がないため、難しい問題である。
精度と不確実性の関係を不確実性校正のアンカーとして活用する最適化手法を提案する。
本稿では,不確実性校正(avuc)損失関数を用いて,精度の向上に加えて,不確実性が十分に調整されたモデルの学習を可能にする。
また,事前学習したモデル上でのポストホック不確実性校正にも,同様の手法を適用できることを実証した。
本手法を平均場確率的変分推定法で説明し,最先端手法と比較する。
大規模な画像分類タスクにおいて, 分布シフトによるモデルキャリブレーションが従来手法よりも優れていることを示す。
関連論文リスト
- Calibrated Uncertainty Quantification for Operator Learning via
Conformal Prediction [95.75771195913046]
本稿では, リスク制御型量子ニューラル演算子, 分布のない有限サンプル機能キャリブレーション等式予測法を提案する。
関数領域上の点の期待値として定義されるカバレッジ率に関する理論的キャリブレーションを保証する。
2次元ダーシー流と3次元自動車表面圧力予測タスクに関する実験結果から,我々の理論的結果が検証された。
論文 参考訳(メタデータ) (2024-02-02T23:43:28Z) - Two Sides of Miscalibration: Identifying Over and Under-Confidence
Prediction for Network Calibration [1.192436948211501]
安全クリティカルなタスクにおける信頼性予測には、ディープニューラルネットワークの信頼性校正が不可欠である。
ミススキャリブレーションは、過信と/または過信をモデル化する。
校正点とクラス別校正点を同定するために,新しい校正点である校正点を導入する。
クラスワイドの誤校正スコアをプロキシとして使用して,過度かつ過度に対処可能な校正手法を設計する。
論文 参考訳(メタデータ) (2023-08-06T17:59:14Z) - Calibration of Neural Networks [77.34726150561087]
本稿では,ニューラルネットワークの文脈における信頼性校正問題について調査する。
我々は,問題文,キャリブレーション定義,評価に対する異なるアプローチについて分析する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
論文 参考訳(メタデータ) (2023-03-19T20:27:51Z) - Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
Optimization [11.456242421204298]
よく校正されたモデルでは、不確実性推定はモデル誤差と完全に相関する。
本稿では,モデル誤差に整合した品質不確実性推定を導出するための,新しい誤差整合不確実性最適化手法を提案する。
本研究では, 平均変位誤差を1.69%, 4.69%, モデル誤差との不確実性相関を17.22%, 19.13%, ピアソン相関係数で定量化することにより, 平均変位誤差を1.69%, 4.69%改善することを示した。
論文 参考訳(メタデータ) (2022-12-09T12:33:26Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - On Calibrated Model Uncertainty in Deep Learning [0.0]
損失校正されたベイジアンフレームワークの近似推論を,ドロップウェイトに基づくベイジアンニューラルネットワークに拡張する。
損失校正された不確実性から得られる決定は、簡単な代替手段よりも、診断性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-06-15T20:16:32Z) - Confidence Calibration for Intent Detection via Hyperspherical Space and
Rebalanced Accuracy-Uncertainty Loss [17.26964140836123]
一部のシナリオでは、ユーザは正確さだけでなく、モデルの信頼性も気にします。
本稿では,超球面空間と精度・不確かさ損失の再バランスを用いたモデルを提案する。
本モデルでは,既存の校正手法より優れ,校正基準の大幅な改善を実現している。
論文 参考訳(メタデータ) (2022-03-17T12:01:33Z) - Transferable Calibration with Lower Bias and Variance in Domain
Adaptation [139.4332115349543]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインへの学習マシンの転送を可能にする。
DAモデルの予測的不確実性を推定する方法は、安全クリティカルなシナリオにおける意思決定に不可欠である。
TransCalは既存のDAメソッドの校正に簡単に適用できる。
論文 参考訳(メタデータ) (2020-07-16T11:09:36Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Calibration of Model Uncertainty for Dropout Variational Inference [1.8065361710947976]
本稿では,モデルの不確実性を再検討するために,異なるロジットスケーリング手法を拡張し,変動予測をドロップアウトに拡張する。
実験の結果,ロジットスケーリングはUCEによる誤校正を著しく低減することがわかった。
論文 参考訳(メタデータ) (2020-06-20T14:12:55Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。