論文の概要: Calibration of Neural Networks
- arxiv url: http://arxiv.org/abs/2303.10761v1
- Date: Sun, 19 Mar 2023 20:27:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 17:28:18.575122
- Title: Calibration of Neural Networks
- Title(参考訳): ニューラルネットワークの校正
- Authors: Ruslan Vasilev, Alexander D'yakonov
- Abstract要約: 本稿では,ニューラルネットワークの文脈における信頼性校正問題について調査する。
我々は,問題文,キャリブレーション定義,評価に対する異なるアプローチについて分析する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks solving real-world problems are often required not only to
make accurate predictions but also to provide a confidence level in the
forecast. The calibration of a model indicates how close the estimated
confidence is to the true probability. This paper presents a survey of
confidence calibration problems in the context of neural networks and provides
an empirical comparison of calibration methods. We analyze problem statement,
calibration definitions, and different approaches to evaluation: visualizations
and scalar measures that estimate whether the model is well-calibrated. We
review modern calibration techniques: based on post-processing or requiring
changes in training. Empirical experiments cover various datasets and models,
comparing calibration methods according to different criteria.
- Abstract(参考訳): 実世界の問題を解決するニューラルネットワークはしばしば、正確な予測を行うだけでなく、予測の信頼性レベルを提供するために必要である。
モデルのキャリブレーションは、推定された信頼度が真の確率にどれほど近いかを示す。
本稿では,ニューラルネットワークの文脈における信頼性校正問題を調査し,校正手法を実証的に比較する。
問題文,キャリブレーション定義,評価へのアプローチについて分析する: モデルが適切に調整されているかどうかを推定する可視化とスカラー測定。
ポストプロセッシングやトレーニングの変更をベースとした,現代的なキャリブレーション手法を概観する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
関連論文リスト
- Probabilistic Calibration by Design for Neural Network Regression [2.3020018305241337]
本稿では,量子校正トレーニングと呼ばれる新しいエンドツーエンドモデルトレーニング手法を提案する。
57の回帰データセットを含む大規模実験において,本手法の性能を実証した。
論文 参考訳(メタデータ) (2024-03-18T17:04:33Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Two Sides of Miscalibration: Identifying Over and Under-Confidence
Prediction for Network Calibration [1.192436948211501]
安全クリティカルなタスクにおける信頼性予測には、ディープニューラルネットワークの信頼性校正が不可欠である。
ミススキャリブレーションは、過信と/または過信をモデル化する。
校正点とクラス別校正点を同定するために,新しい校正点である校正点を導入する。
クラスワイドの誤校正スコアをプロキシとして使用して,過度かつ過度に対処可能な校正手法を設計する。
論文 参考訳(メタデータ) (2023-08-06T17:59:14Z) - Calibration in Deep Learning: A Survey of the State-of-the-Art [7.6087138685470945]
ディープニューラルネットワークのキャリブレーションは、安全クリティカルなアプリケーションにおいて、信頼性が高く堅牢なAIシステムを構築する上で重要な役割を果たす。
近年の研究では、予測能力の高い現代のニューラルネットワークは、キャリブレーションが不十分であり、信頼性の低いモデル予測を生成することが示されている。
論文 参考訳(メタデータ) (2023-08-02T15:28:10Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
セマンティックセグメンテーションキャリブレーションの問題について検討する。
モデルキャパシティ、作物サイズ、マルチスケールテスト、予測精度はキャリブレーションに影響を及ぼす。
我々は、単純で統一的で効果的なアプローチ、すなわち選択的スケーリングを提案する。
論文 参考訳(メタデータ) (2022-12-22T22:05:16Z) - Meta-Calibration: Learning of Model Calibration Using Differentiable
Expected Calibration Error [46.12703434199988]
我々は、キャリブレーション品質を直接最適化できる、期待キャリブレーション誤差(DECE)のための新しい微分可能なサロゲートを導入する。
また、DECEを用いて検証セットの校正を最適化するメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-17T15:47:50Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
我々は新しいキャリブレーション手法であるパラメタライズド温度スケーリング(PTS)を導入する。
最新のポストホックキャリブレータの精度保持性能は、その本質的な表現力によって制限されることを実証します。
当社の新しい精度保存手法が,多数のモデルアーキテクチャやデータセット,メトリクスにおいて,既存のアルゴリズムを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2021-02-24T10:18:30Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。