Teach me to segment with mixed supervision: Confident students become
masters
- URL: http://arxiv.org/abs/2012.08051v1
- Date: Tue, 15 Dec 2020 02:51:36 GMT
- Title: Teach me to segment with mixed supervision: Confident students become
masters
- Authors: Jose Dolz, Christian Desrosiers, Ismail Ben Ayed
- Abstract summary: Deep segmentation neural networks require large training datasets with pixel-wise segmentations, which are expensive to obtain in practice.
We propose a dual-branch architecture, where the upper branch (teacher) receives strong annotations, while the bottom one (student) is driven by limited supervision and guided by the upper branch.
We demonstrate that our method significantly outperforms other strategies to tackle semantic segmentation within a mixed-supervision framework.
- Score: 27.976487552313113
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep segmentation neural networks require large training datasets with
pixel-wise segmentations, which are expensive to obtain in practice. Mixed
supervision could mitigate this difficulty, with a small fraction of the data
containing complete pixel-wise annotations, while the rest being less
supervised, e.g., only a handful of pixels are labeled. In this work, we
propose a dual-branch architecture, where the upper branch (teacher) receives
strong annotations, while the bottom one (student) is driven by limited
supervision and guided by the upper branch. In conjunction with a standard
cross-entropy over the labeled pixels, our novel formulation integrates two
important terms: (i) a Shannon entropy loss defined over the less-supervised
images, which encourages confident student predictions at the bottom branch;
and (ii) a Kullback-Leibler (KL) divergence, which transfers the knowledge from
the predictions generated by the strongly supervised branch to the
less-supervised branch, and guides the entropy (student-confidence) term to
avoid trivial solutions. Very interestingly, we show that the synergy between
the entropy and KL divergence yields substantial improvements in performances.
Furthermore, we discuss an interesting link between Shannon-entropy
minimization and standard pseudo-mask generation and argue that the former
should be preferred over the latter for leveraging information from unlabeled
pixels. Through a series of quantitative and qualitative experiments, we show
the effectiveness of the proposed formulation in segmenting the left-ventricle
endocardium in MRI images. We demonstrate that our method significantly
outperforms other strategies to tackle semantic segmentation within a
mixed-supervision framework. More interestingly, and in line with recent
observations in classification, we show that the branch trained with reduced
supervision largely outperforms the teacher.
Related papers
- Intrapartum Ultrasound Image Segmentation of Pubic Symphysis and Fetal Head Using Dual Student-Teacher Framework with CNN-ViT Collaborative Learning [1.5233179662962222]
The segmentation of the pubic symphysis and fetal head (PSFH) constitutes a pivotal step in monitoring labor progression and identifying potential delivery complications.
Traditional semi-supervised learning approaches primarily utilize a unified network model based on Convolutional Neural Networks (CNNs)
We introduce a novel framework, the Dual-Student and Teacher Combining CNN and Transformer (DSTCT)
arXiv Detail & Related papers (2024-09-11T00:57:31Z) - 2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic
Segmentation [92.17700318483745]
We propose an image-guidance network (IGNet) which builds upon the idea of distilling high level feature information from a domain adapted synthetically trained 2D semantic segmentation network.
IGNet achieves state-of-the-art results for weakly-supervised LiDAR semantic segmentation on ScribbleKITTI, boasting up to 98% relative performance to fully supervised training with only 8% labeled points.
arXiv Detail & Related papers (2023-11-27T07:57:29Z) - IDEAL: Improved DEnse locAL Contrastive Learning for Semi-Supervised
Medical Image Segmentation [3.6748639131154315]
We extend the concept of metric learning to the segmentation task.
We propose a simple convolutional projection head for obtaining dense pixel-level features.
A bidirectional regularization mechanism involving two-stream regularization training is devised for the downstream task.
arXiv Detail & Related papers (2022-10-26T23:11:02Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Mixed-supervised segmentation: Confidence maximization helps knowledge
distillation [24.892332859630518]
In this work, we propose a dual-branch architecture for deep neural networks.
The upper branch (teacher) receives strong annotations, while the bottom one (student) is driven by limited supervision and guided by the upper branch.
We show that the synergy between the entropy and KL divergence yields substantial improvements in performance.
arXiv Detail & Related papers (2021-09-21T20:06:13Z) - Flip Learning: Erase to Segment [65.84901344260277]
Weakly-supervised segmentation (WSS) can help reduce time-consuming and cumbersome manual annotation.
We propose a novel and general WSS framework called Flip Learning, which only needs the box annotation.
Our proposed approach achieves competitive performance and shows great potential to narrow the gap between fully-supervised and weakly-supervised learning.
arXiv Detail & Related papers (2021-08-02T09:56:10Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
We propose a novel fully unsupervised semantic segmentation method, the so-called Information Maximization and Adrial Regularization (InMARS)
Inspired by human perception which parses a scene into perceptual groups, our proposed approach first partitions an input image into meaningful regions (also known as superpixels)
Next, it utilizes Mutual-Information-Maximization followed by an adversarial training strategy to cluster these regions into semantically meaningful classes.
Our experiments demonstrate that our method achieves the state-of-the-art performance on two commonly used unsupervised semantic segmentation datasets.
arXiv Detail & Related papers (2021-07-01T18:36:27Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
We propose a semi-weakly supervised segmentation algorithm to overcome this barrier.
Our approach is based on a new formulation of deep supervision and student-teacher model.
With our novel training regime for segmentation that flexibly makes use of images that are either fully labeled, marked with bounding boxes, just global labels, or not at all, we are able to cut the requirement for expensive labels by 94.22%.
arXiv Detail & Related papers (2021-04-27T14:51:19Z) - Semi-supervised Left Atrium Segmentation with Mutual Consistency
Training [60.59108570938163]
We propose a novel Mutual Consistency Network (MC-Net) for semi-supervised left atrium segmentation from 3D MR images.
Our MC-Net consists of one encoder and two slightly different decoders, and the prediction discrepancies of two decoders are transformed as an unsupervised loss.
We evaluate our MC-Net on the public Left Atrium (LA) database and it obtains impressive performance gains by exploiting the unlabeled data effectively.
arXiv Detail & Related papers (2021-03-04T09:34:32Z) - Self-supervised Equivariant Attention Mechanism for Weakly Supervised
Semantic Segmentation [93.83369981759996]
We propose a self-supervised equivariant attention mechanism (SEAM) to discover additional supervision and narrow the gap.
Our method is based on the observation that equivariance is an implicit constraint in fully supervised semantic segmentation.
We propose consistency regularization on predicted CAMs from various transformed images to provide self-supervision for network learning.
arXiv Detail & Related papers (2020-04-09T14:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.