A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision
- URL: http://arxiv.org/abs/2010.12219v1
- Date: Fri, 23 Oct 2020 07:58:20 GMT
- Title: A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision
- Authors: Liyan Sun, Jianxiong Wu, Xinghao Ding, Yue Huang, Guisheng Wang and
Yizhou Yu
- Abstract summary: We develop a semi-supervised learning framework based on a teacher-student fashion for organ and lesion segmentation.
We show our model is robust to the quality of bounding box and achieves comparable performance compared with full-supervised learning methods.
- Score: 62.4773770041279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard segmentation of medical images based on full-supervised
convolutional networks demands accurate dense annotations. Such learning
framework is built on laborious manual annotation with restrict demands for
expertise, leading to insufficient high-quality labels. To overcome such
limitation and exploit massive weakly labeled data, we relaxed the rigid
labeling requirement and developed a semi-supervised learning framework based
on a teacher-student fashion for organ and lesion segmentation with partial
dense-labeled supervision and supplementary loose bounding-box supervision
which are easier to acquire. Observing the geometrical relation of an organ and
its inner lesions in most cases, we propose a hierarchical organ-to-lesion
(O2L) attention module in a teacher segmentor to produce pseudo-labels. Then a
student segmentor is trained with combinations of manual-labeled and
pseudo-labeled annotations. We further proposed a localization branch realized
via an aggregation of high-level features in a deep decoder to predict
locations of organ and lesion, which enriches student segmentor with precise
localization information. We validated each design in our model on LiTS
challenge datasets by ablation study and showed its state-of-the-art
performance compared with recent methods. We show our model is robust to the
quality of bounding box and achieves comparable performance compared with
full-supervised learning methods.
Related papers
- Intrapartum Ultrasound Image Segmentation of Pubic Symphysis and Fetal Head Using Dual Student-Teacher Framework with CNN-ViT Collaborative Learning [1.5233179662962222]
The segmentation of the pubic symphysis and fetal head (PSFH) constitutes a pivotal step in monitoring labor progression and identifying potential delivery complications.
Traditional semi-supervised learning approaches primarily utilize a unified network model based on Convolutional Neural Networks (CNNs)
We introduce a novel framework, the Dual-Student and Teacher Combining CNN and Transformer (DSTCT)
arXiv Detail & Related papers (2024-09-11T00:57:31Z) - Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning [3.231698506153459]
Supervised learning methods achieve excellent performances when fed with a sufficient amount of labeled data.
Such labels are typically highly time-consuming, error-prone and expensive to produce.
Semi-supervised learning approaches leverage both labeled and unlabeled data, and are very useful when only a small fraction of the dataset is labeled.
arXiv Detail & Related papers (2024-04-02T09:31:06Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
We propose the PLGDF framework, which builds upon the mean teacher network for segmenting medical images with less annotation.
We propose a novel pseudo-label utilization scheme, which combines labeled and unlabeled data to augment the dataset effectively.
Our framework yields superior performance compared to six state-of-the-art semi-supervised learning methods.
arXiv Detail & Related papers (2023-11-17T06:36:43Z) - Federated Semi-supervised Medical Image Classification via Inter-client
Relation Matching [58.26619456972598]
Federated learning (FL) has emerged with increasing popularity to collaborate distributed medical institutions for training deep networks.
This paper studies a practical yet challenging FL problem, named textitFederated Semi-supervised Learning (FSSL)
We present a novel approach for this problem, which improves over traditional consistency regularization mechanism with a new inter-client relation matching scheme.
arXiv Detail & Related papers (2021-06-16T07:58:00Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
We propose a semi-weakly supervised segmentation algorithm to overcome this barrier.
Our approach is based on a new formulation of deep supervision and student-teacher model.
With our novel training regime for segmentation that flexibly makes use of images that are either fully labeled, marked with bounding boxes, just global labels, or not at all, we are able to cut the requirement for expensive labels by 94.22%.
arXiv Detail & Related papers (2021-04-27T14:51:19Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.