Variational Beam Search for Learning with Distribution Shifts
- URL: http://arxiv.org/abs/2012.08101v2
- Date: Thu, 11 Feb 2021 23:14:07 GMT
- Title: Variational Beam Search for Learning with Distribution Shifts
- Authors: Aodong Li, Alex Boyd, Padhraic Smyth, Stephan Mandt
- Abstract summary: We propose a new Bayesian meta-algorithm that can both (i) make inferences about subtle distribution shifts based on minimal sequential observations and (ii) accordingly adapt a model in an online fashion.
Our proposed approach is model-agnostic, applicable to both supervised and unsupervised learning, and yields significant improvements over state-of-the-art Bayesian online learning approaches.
- Score: 26.345665980534374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of online learning in the presence of sudden
distribution shifts as frequently encountered in applications such as
autonomous navigation. Distribution shifts require constant performance
monitoring and re-training. They may also be hard to detect and can lead to a
slow but steady degradation in model performance. To address this problem we
propose a new Bayesian meta-algorithm that can both (i) make inferences about
subtle distribution shifts based on minimal sequential observations and (ii)
accordingly adapt a model in an online fashion. The approach uses beam search
over multiple change point hypotheses to perform inference on a hierarchical
sequential latent variable modeling framework. Our proposed approach is
model-agnostic, applicable to both supervised and unsupervised learning, and
yields significant improvements over state-of-the-art Bayesian online learning
approaches.
Related papers
- Diffusing States and Matching Scores: A New Framework for Imitation Learning [16.941612670582522]
Adversarial Imitation Learning is traditionally framed as a two-player zero-sum game between a learner and an adversarially chosen cost function.
In recent years, diffusion models have emerged as a non-adversarial alternative to GANs.
We show our approach outperforms GAN-style imitation learning baselines across various continuous control problems.
arXiv Detail & Related papers (2024-10-17T17:59:25Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
Multimodal foundation models serve numerous applications at the intersection of vision and language.
To keep models updated, research into continual pretraining mainly explores scenarios with either infrequent, indiscriminate updates on large-scale new data, or frequent, sample-level updates.
We introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements.
arXiv Detail & Related papers (2024-08-26T17:59:01Z) - Model-based Offline Policy Optimization with Adversarial Network [0.36868085124383626]
We propose a novel Model-based Offline policy optimization framework with Adversarial Network (MOAN)
Key idea is to use adversarial learning to build a transition model with better generalization.
Our approach outperforms existing state-of-the-art baselines on widely studied offline RL benchmarks.
arXiv Detail & Related papers (2023-09-05T11:49:33Z) - Algorithm Design for Online Meta-Learning with Task Boundary Detection [63.284263611646]
We propose a novel algorithm for task-agnostic online meta-learning in non-stationary environments.
We first propose two simple but effective detection mechanisms of task switches and distribution shift.
We show that a sublinear task-averaged regret can be achieved for our algorithm under mild conditions.
arXiv Detail & Related papers (2023-02-02T04:02:49Z) - Distributionally Adaptive Meta Reinforcement Learning [85.17284589483536]
We develop a framework for meta-RL algorithms that behave appropriately under test-time distribution shifts.
Our framework centers on an adaptive approach to distributional robustness that trains a population of meta-policies to be robust to varying levels of distribution shift.
We show how our framework allows for improved regret under distribution shift, and empirically show its efficacy on simulated robotics problems.
arXiv Detail & Related papers (2022-10-06T17:55:09Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
We propose a Switchable representation learning Framework with Self-Compatibility (SFSC)
SFSC generates a series of compatible sub-models with different capacities through one training process.
SFSC achieves state-of-the-art performance on the evaluated datasets.
arXiv Detail & Related papers (2022-06-16T16:46:32Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Bilevel Online Deep Learning in Non-stationary Environment [4.565872584112864]
Bilevel Online Deep Learning (BODL) framework combines bilevel optimization strategy and online ensemble classifier.
When the concept drift is detected, our BODL algorithm can adaptively update the model parameters via bilevel optimization and then circumvent the large drift and encourage positive transfer.
arXiv Detail & Related papers (2022-01-25T11:05:51Z) - Mixture of basis for interpretable continual learning with distribution
shifts [1.6114012813668934]
Continual learning in environments with shifting data distributions is a challenging problem with several real-world applications.
We propose a novel approach called mixture of Basismodels (MoB) for addressing this problem setting.
arXiv Detail & Related papers (2022-01-05T22:53:15Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.