Diffusing States and Matching Scores: A New Framework for Imitation Learning
- URL: http://arxiv.org/abs/2410.13855v1
- Date: Thu, 17 Oct 2024 17:59:25 GMT
- Title: Diffusing States and Matching Scores: A New Framework for Imitation Learning
- Authors: Runzhe Wu, Yiding Chen, Gokul Swamy, Kianté Brantley, Wen Sun,
- Abstract summary: Adversarial Imitation Learning is traditionally framed as a two-player zero-sum game between a learner and an adversarially chosen cost function.
In recent years, diffusion models have emerged as a non-adversarial alternative to GANs.
We show our approach outperforms GAN-style imitation learning baselines across various continuous control problems.
- Score: 16.941612670582522
- License:
- Abstract: Adversarial Imitation Learning is traditionally framed as a two-player zero-sum game between a learner and an adversarially chosen cost function, and can therefore be thought of as the sequential generalization of a Generative Adversarial Network (GAN). A prominent example of this framework is Generative Adversarial Imitation Learning (GAIL). However, in recent years, diffusion models have emerged as a non-adversarial alternative to GANs that merely require training a score function via regression, yet produce generations of a higher quality. In response, we investigate how to lift insights from diffusion modeling to the sequential setting. We propose diffusing states and performing score-matching along diffused states to measure the discrepancy between the expert's and learner's states. Thus, our approach only requires training score functions to predict noises via standard regression, making it significantly easier and more stable to train than adversarial methods. Theoretically, we prove first- and second-order instance-dependent bounds with linear scaling in the horizon, proving that our approach avoids the compounding errors that stymie offline approaches to imitation learning. Empirically, we show our approach outperforms GAN-style imitation learning baselines across various continuous control problems, including complex tasks like controlling humanoids to walk, sit, and crawl.
Related papers
- Diffusion Imitation from Observation [4.205946699819021]
adversarial imitation learning approaches learn a generator agent policy to produce state transitions that are indistinguishable to a discriminator.
Motivated by the recent success of diffusion models in generative modeling, we propose to integrate a diffusion model into the adversarial imitation learning from observation framework.
arXiv Detail & Related papers (2024-10-07T18:49:55Z) - ReconBoost: Boosting Can Achieve Modality Reconcilement [89.4377895465204]
We study the modality-alternating learning paradigm to achieve reconcilement.
We propose a new method called ReconBoost to update a fixed modality each time.
We show that the proposed method resembles Friedman's Gradient-Boosting (GB) algorithm, where the updated learner can correct errors made by others.
arXiv Detail & Related papers (2024-05-15T13:22:39Z) - TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression [11.040033344386366]
We propose a two-step method with a novel fused-regularizer to improve the learning performance on a target task with limited samples.
Nonasymptotic bound is provided for the estimation error of the target model.
We extend the method to a distributed setting, allowing for a pretraining-finetuning strategy.
arXiv Detail & Related papers (2024-04-01T14:58:16Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Federated Unlearning via Active Forgetting [24.060724751342047]
We propose a novel federated unlearning framework based on incremental learning.
Our framework differs from existing federated unlearning methods that rely on approximate retraining or data influence estimation.
arXiv Detail & Related papers (2023-07-07T03:07:26Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Variational Beam Search for Learning with Distribution Shifts [26.345665980534374]
We propose a new Bayesian meta-algorithm that can both (i) make inferences about subtle distribution shifts based on minimal sequential observations and (ii) accordingly adapt a model in an online fashion.
Our proposed approach is model-agnostic, applicable to both supervised and unsupervised learning, and yields significant improvements over state-of-the-art Bayesian online learning approaches.
arXiv Detail & Related papers (2020-12-15T05:28:47Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z) - Non-Adversarial Imitation Learning and its Connections to Adversarial
Methods [21.89749623434729]
We present a framework for non-adversarial imitation learning.
The resulting algorithms are similar to their adversarial counterparts.
We also show that our non-adversarial formulation can be used to derive novel algorithms.
arXiv Detail & Related papers (2020-08-08T13:43:06Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.