Relation-Aware Neighborhood Matching Model for Entity Alignment
- URL: http://arxiv.org/abs/2012.08128v1
- Date: Tue, 15 Dec 2020 07:22:39 GMT
- Title: Relation-Aware Neighborhood Matching Model for Entity Alignment
- Authors: Yao Zhu, Hongzhi Liu, Zhonghai Wu, Yingpeng Du
- Abstract summary: We propose a novel Relation-aware Neighborhood Matching model named RNM for entity alignment.
We show that the proposed model RNM performs better than state-of-the-art methods.
- Score: 8.098825914119693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity alignment which aims at linking entities with the same meaning from
different knowledge graphs (KGs) is a vital step for knowledge fusion. Existing
research focused on learning embeddings of entities by utilizing structural
information of KGs for entity alignment. These methods can aggregate
information from neighboring nodes but may also bring noise from neighbors.
Most recently, several researchers attempted to compare neighboring nodes in
pairs to enhance the entity alignment. However, they ignored the relations
between entities which are also important for neighborhood matching. In
addition, existing methods paid less attention to the positive interactions
between the entity alignment and the relation alignment. To deal with these
issues, we propose a novel Relation-aware Neighborhood Matching model named RNM
for entity alignment. Specifically, we propose to utilize the neighborhood
matching to enhance the entity alignment. Besides comparing neighbor nodes when
matching neighborhood, we also try to explore useful information from the
connected relations. Moreover, an iterative framework is designed to leverage
the positive interactions between the entity alignment and the relation
alignment in a semi-supervised manner. Experimental results on three real-world
datasets demonstrate that the proposed model RNM performs better than
state-of-the-art methods.
Related papers
- SEG:Seeds-Enhanced Iterative Refinement Graph Neural Network for Entity Alignment [13.487673375206276]
This paper presents a soft label propagation framework that integrates multi-source data and iterative seed enhancement.
A bidirectional weighted joint loss function is implemented, which reduces the distance between positive samples and differentially processes negative samples.
Our method outperforms existing semi-supervised approaches, as evidenced by superior results on multiple datasets.
arXiv Detail & Related papers (2024-10-28T04:50:46Z) - HIORE: Leveraging High-order Interactions for Unified Entity Relation
Extraction [85.80317530027212]
We propose HIORE, a new method for unified entity relation extraction.
The key insight is to leverage the complex association among word pairs, which contains richer information than the first-order word-by-word interactions.
Experiments show that HIORE achieves the state-of-the-art performance on relation extraction and an improvement of 1.11.8 F1 points over the prior best unified model.
arXiv Detail & Related papers (2023-05-07T14:57:42Z) - Learnable Pillar-based Re-ranking for Image-Text Retrieval [119.9979224297237]
Image-text retrieval aims to bridge the modality gap and retrieve cross-modal content based on semantic similarities.
Re-ranking, a popular post-processing practice, has revealed the superiority of capturing neighbor relations in single-modality retrieval tasks.
We propose a novel learnable pillar-based re-ranking paradigm for image-text retrieval.
arXiv Detail & Related papers (2023-04-25T04:33:27Z) - Exploiting Global Semantic Similarities in Knowledge Graphs by
Relational Prototype Entities [55.952077365016066]
An empirical observation is that the head and tail entities connected by the same relation often share similar semantic attributes.
We propose a novel approach, which introduces a set of virtual nodes called textittextbfrelational prototype entities.
By enforcing the entities' embeddings close to their associated prototypes' embeddings, our approach can effectively encourage the global semantic similarities of entities.
arXiv Detail & Related papers (2022-06-16T09:25:33Z) - Informed Multi-context Entity Alignment [27.679124991733907]
We propose an Informed Multi-context Entity Alignment (IMEA) model to address these issues.
In particular, we introduce Transformer to flexibly capture the relation, path, and neighborhood contexts.
holistic reasoning is used to estimate alignment probabilities based on both embedding similarity and the relation/entity functionality.
Results on several benchmark datasets demonstrate the superiority of our IMEA model compared with existing state-of-the-art entity alignment methods.
arXiv Detail & Related papers (2022-01-02T06:29:30Z) - Modelling Neighbor Relation in Joint Space-Time Graph for Video
Correspondence Learning [53.74240452117145]
This paper presents a self-supervised method for learning reliable visual correspondence from unlabeled videos.
We formulate the correspondence as finding paths in a joint space-time graph, where nodes are grid patches sampled from frames, and are linked by two types of edges.
Our learned representation outperforms the state-of-the-art self-supervised methods on a variety of visual tasks.
arXiv Detail & Related papers (2021-09-28T05:40:01Z) - RAGA: Relation-aware Graph Attention Networks for Global Entity
Alignment [14.287681294725438]
We propose a novel framework based on Relation-aware Graph Attention Networks to capture the interactions between entities and relations.
Our framework adopts the self-attention mechanism to spread entity information to the relations and then aggregate relation information back to entities.
arXiv Detail & Related papers (2021-03-01T06:30:51Z) - Knowledge Graph Embedding using Graph Convolutional Networks with
Relation-Aware Attention [3.803929794912623]
Knowledge graph embedding methods learn embeddings of entities and relations in a low dimensional space.
Various graph convolutional network methods have been proposed which use different types of information to learn the features of entities and relations.
We propose a relation-aware graph attention model that leverages relation information to compute different weights to the neighboring nodes for learning embeddings of entities and relations.
arXiv Detail & Related papers (2021-02-14T17:19:44Z) - Neighborhood Matching Network for Entity Alignment [71.24217694278616]
Neighborhood Matching Network (NMN) is a novel entity alignment framework.
NMN estimates the similarities between entities to capture both the topological structure and the neighborhood difference.
It first uses a novel graph sampling method to distill a discriminative neighborhood for each entity.
It then adopts a cross-graph neighborhood matching module to jointly encode the neighborhood difference for a given entity pair.
arXiv Detail & Related papers (2020-05-12T08:26:15Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.