論文の概要: Calibrated Adaptive Probabilistic ODE Solvers
- arxiv url: http://arxiv.org/abs/2012.08202v2
- Date: Mon, 22 Feb 2021 10:48:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-08 07:05:55.266780
- Title: Calibrated Adaptive Probabilistic ODE Solvers
- Title(参考訳): Calibrated Adaptive Probabilistic ODE Solvers
- Authors: Nathanael Bosch, Philipp Hennig, Filip Tronarp
- Abstract要約: 不確実性の推定を校正するいくつかの確率的動機づけのある方法を紹介し,議論し,評価する。
本手法は,従来の4/5 runge-kutta法に対してベンチマークを行い,その効率性を示す。
- 参考スコア(独自算出の注目度): 31.442275669185626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic solvers for ordinary differential equations assign a posterior
measure to the solution of an initial value problem. The joint covariance of
this distribution provides an estimate of the (global) approximation error. The
contraction rate of this error estimate as a function of the solver's step size
identifies it as a well-calibrated worst-case error, but its explicit numerical
value for a certain step size is not automatically a good estimate of the
explicit error. Addressing this issue, we introduce, discuss, and assess
several probabilistically motivated ways to calibrate the uncertainty estimate.
Numerical experiments demonstrate that these calibration methods interact
efficiently with adaptive step-size selection, resulting in descriptive, and
efficiently computable posteriors. We demonstrate the efficiency of the
methodology by benchmarking against the classic, widely used Dormand-Prince 4/5
Runge-Kutta method.
- Abstract(参考訳): 通常の微分方程式に対する確率的解法は、初期値問題の解に後続測度を割り当てる。
この分布の合同共分散は(大域的)近似誤差の推定をもたらす。
この誤差をソルバのステップサイズ関数として推定する収縮速度は、よく説明された最悪のケースエラーと同定するが、その特定のステップサイズに対する明示的な数値は、明示的なエラーを正しく推定するものではない。
この問題に対処するために,不確実性推定を校正するいくつかの確率的動機付け手法を紹介し,議論し,評価する。
数値実験により, これらのキャリブレーション法は適応的なステップサイズ選択と効率的に相互作用し, 記述的かつ効率的に計算可能であることが示された。
本手法は,従来の4/5 runge-kutta法に対してベンチマークを行い,その効率性を示す。
関連論文リスト
- Adaptive Ensemble Q-learning: Minimizing Estimation Bias via Error
Feedback [31.115084475673793]
アンサンブル法はQ-ラーニングにおける過大評価問題を緩和するための有望な方法である。
推定バイアスはアンサンブルサイズに大きく依存していることが知られている。
本研究では, (a) アンサンブルサイズを柔軟に制御するためのフィードバックとなる近似誤差特性と, (b) 推定バイアスを最小化するためのアンサンブルサイズ適応の2つの重要なステップを考案する。
論文 参考訳(メタデータ) (2023-06-20T22:06:14Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - A Consistent and Differentiable Lp Canonical Calibration Error Estimator [21.67616079217758]
ディープニューラルネットワークは校正が不十分で、自信過剰な予測を出力する傾向がある。
ディリクレ核密度推定に基づく低バイアス・トレーニング可能な校正誤差推定器を提案する。
提案手法はカーネルの自然な選択であり,他の量の一貫した推定値を生成するのに利用できる。
論文 参考訳(メタデータ) (2022-10-13T15:11:11Z) - Parametric and Multivariate Uncertainty Calibration for Regression and
Object Detection [4.630093015127541]
一般的な検出モデルでは,観測誤差と比較して空間的不確かさが過大評価されている。
実験の結果, 簡便な等速回帰補正法は, 良好な校正不確実性を実現するのに十分であることがわかった。
対照的に、後続のプロセスに正規分布が必要な場合、GP-Normal再校正法が最良の結果をもたらす。
論文 参考訳(メタデータ) (2022-07-04T08:00:20Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Mean-squared-error-based adaptive estimation of pure quantum states and
unitary transformations [0.0]
単一キューディットの純量子状態を高精度に推定する手法を提案する。
本手法は,未知状態の複素確率振幅と推定値との2乗誤差の最小化に基づく。
提案手法は, 1つのキュートに作用する未知のユニタリ変換を推定するために, 容易に拡張可能であることを示す。
論文 参考訳(メタデータ) (2020-08-23T00:32:10Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。