論文の概要: Policy Optimization as Online Learning with Mediator Feedback
- arxiv url: http://arxiv.org/abs/2012.08225v1
- Date: Tue, 15 Dec 2020 11:34:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 05:40:54.988259
- Title: Policy Optimization as Online Learning with Mediator Feedback
- Title(参考訳): オンライン学習における政策最適化
- Authors: Alberto Maria Metelli, Matteo Papini, Pierluca D'Oro, and Marcello
Restelli
- Abstract要約: ポリシー最適化(PO)は、継続的制御タスクに対処するための広く使われているアプローチである。
本稿では、政策分野におけるオンライン学習問題としてpoを枠組みとする仲介者フィードバックの概念を紹介する。
本稿では,再帰的最小化のために,RIST (Multiple Importance Smpling with Truncation) を用いたアルゴリズム RANDomized-Exploration Policy Optimization を提案する。
- 参考スコア(独自算出の注目度): 46.845765216238135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy Optimization (PO) is a widely used approach to address continuous
control tasks. In this paper, we introduce the notion of mediator feedback that
frames PO as an online learning problem over the policy space. The additional
available information, compared to the standard bandit feedback, allows reusing
samples generated by one policy to estimate the performance of other policies.
Based on this observation, we propose an algorithm, RANDomized-exploration
policy Optimization via Multiple Importance Sampling with Truncation
(RANDOMIST), for regret minimization in PO, that employs a randomized
exploration strategy, differently from the existing optimistic approaches. When
the policy space is finite, we show that under certain circumstances, it is
possible to achieve constant regret, while always enjoying logarithmic regret.
We also derive problem-dependent regret lower bounds. Then, we extend RANDOMIST
to compact policy spaces. Finally, we provide numerical simulations on finite
and compact policy spaces, in comparison with PO and bandit baselines.
- Abstract(参考訳): ポリシー最適化(PO)は、継続的制御タスクに対処するための広く使われているアプローチである。
本稿では、政策分野におけるオンライン学習問題としてpoを枠組みとする仲介者フィードバックの概念を紹介する。
標準のバンディットフィードバックと比較して、追加可能な情報は、あるポリシーが生成したサンプルを再利用することで、他のポリシーのパフォーマンスを見積もることができる。
そこで本研究では,既存の楽観的手法とは異なるランダム化探索戦略を用いたpoにおける後悔の最小化を目的とした,複数重要サンプリングによるランダム化探索(randomist)によるランダム化探索政策最適化手法を提案する。
方針空間が有限であれば、ある状況下では、常に対数的後悔を享受しながら、一定の後悔を達成できることを示す。
我々はまた、問題依存の後悔の限界を導出する。
そして、RANDOMISTをコンパクトなポリシー空間に拡張する。
最後に,po とbandit のベースラインと比較して,有限およびコンパクトなポリシー空間の数値シミュレーションを行う。
関連論文リスト
- Statistical Analysis of Policy Space Compression Problem [54.1754937830779]
政策探索手法は強化学習において重要であり、継続的な状態反応と部分的に観察可能な問題に対処するための枠組みを提供する。
政策圧縮による政策空間の削減は、学習プロセスを加速するための強力で報酬のないアプローチとして現れます。
この手法は方針空間をより小さく代表的な集合に凝縮し、元の効果のほとんどを維持している。
論文 参考訳(メタデータ) (2024-11-15T02:46:55Z) - Importance-Weighted Offline Learning Done Right [16.4989952150404]
文脈的帯域幅問題におけるオフラインポリシー最適化の問題について検討する。
目標は、準最適行動ポリシーによって収集された決定データのデータセットに基づいて、ほぼ最適ポリシーを学ぶことである。
我々は、citet2015の「単純探索」推定に基づく単純な代替手法が、過去の全ての結果よりもほぼ全ての可能な条件で優れた性能保証を与えることを示した。
論文 参考訳(メタデータ) (2023-09-27T16:42:10Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - SPEED: Experimental Design for Policy Evaluation in Linear
Heteroscedastic Bandits [13.02672341061555]
線形帯域における政策評価のための最適データ収集の問題について検討する。
まず,重み付き最小二乗推定値に対して,重み付き線形帯域設定で最適設計を定式化する。
次に、この定式化を使用して、データ収集中にアクション毎のサンプルの最適な割り当てを導出します。
論文 参考訳(メタデータ) (2023-01-29T04:33:13Z) - CAMEO: Curiosity Augmented Metropolis for Exploratory Optimal Policies [62.39667564455059]
最適政策の分布を考察し研究する。
実験シミュレーションでは、CAMEOは古典的な制御問題を全て解決するポリシーを実際に得ることを示した。
さらに,本論文では,異なるリスクプロファイルを示す異なるポリシーを,解釈可能性に関する興味深い実践的応用に対応して提示する。
論文 参考訳(メタデータ) (2022-05-19T09:48:56Z) - Zeroth-Order Actor-Critic [6.5158195776494]
本稿では,この2つの手法をオンラインアクター・クリティカル・アーキテクチャに統一するゼロ階アクター・クリティカル・アルゴリズム(ZOAC)を提案する。
提案手法は,ZOACが0次・1次ベースラインアルゴリズムより優れる,多種多様なポリシーを用いて,多種多様な連続制御ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2022-01-29T07:09:03Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (reps) は多くのシミュレーションと実世界のロボットドメインでポリシー学習に成功した。
勾配に基づく解法を用いる場合、REPSの性能には保証がない。
最適規則化ポリシーに好適な収束を維持するためのパラメータ更新を計算するために,基礎となる決定プロセスへの表現的アクセスを利用する手法を提案する。
論文 参考訳(メタデータ) (2021-03-17T16:22:59Z) - Optimization Issues in KL-Constrained Approximate Policy Iteration [48.24321346619156]
多くの強化学習アルゴリズムは、近似ポリシー反復(API)のバージョンと見なすことができる。
標準APIはしばしば動作が悪いが、KL-divergenceによる各ポリシー更新を以前のポリシーに正規化することで学習が安定化できることが示されている。
TRPO、MPO、VMPOなどの一般的な実用的なアルゴリズムは、連続ポリシーのKL分割に関する制約によって正規化を置き換える。
論文 参考訳(メタデータ) (2021-02-11T19:35:33Z) - Variational Policy Propagation for Multi-agent Reinforcement Learning [68.26579560607597]
本稿では,エージェント間の相互作用を通じて,共役ポリシーを学習するために,変動ポリシー伝搬 (VPP) という,共役型多エージェント強化学習アルゴリズムを提案する。
共同政策がマルコフランダム場(Markov Random Field)であることは、いくつかの穏やかな条件下で証明し、それによって政策空間を効果的に減少させる。
我々は、マルコフ確率場から効率的に行動をサンプリングでき、全体的な政策が微分可能であるようなポリシーにおいて、変動推論を特別な微分可能な層として統合する。
論文 参考訳(メタデータ) (2020-04-19T15:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。