論文の概要: Statistical Analysis of Policy Space Compression Problem
- arxiv url: http://arxiv.org/abs/2411.09900v1
- Date: Fri, 15 Nov 2024 02:46:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:39:40.512892
- Title: Statistical Analysis of Policy Space Compression Problem
- Title(参考訳): 政策空間圧縮問題の統計的解析
- Authors: Majid Molaei, Marcello Restelli, Alberto Maria Metelli, Matteo Papini,
- Abstract要約: 政策探索手法は強化学習において重要であり、継続的な状態反応と部分的に観察可能な問題に対処するための枠組みを提供する。
政策圧縮による政策空間の削減は、学習プロセスを加速するための強力で報酬のないアプローチとして現れます。
この手法は方針空間をより小さく代表的な集合に凝縮し、元の効果のほとんどを維持している。
- 参考スコア(独自算出の注目度): 54.1754937830779
- License:
- Abstract: Policy search methods are crucial in reinforcement learning, offering a framework to address continuous state-action and partially observable problems. However, the complexity of exploring vast policy spaces can lead to significant inefficiencies. Reducing the policy space through policy compression emerges as a powerful, reward-free approach to accelerate the learning process. This technique condenses the policy space into a smaller, representative set while maintaining most of the original effectiveness. Our research focuses on determining the necessary sample size to learn this compressed set accurately. We employ R\'enyi divergence to measure the similarity between true and estimated policy distributions, establishing error bounds for good approximations. To simplify the analysis, we employ the $l_1$ norm, determining sample size requirements for both model-based and model-free settings. Finally, we correlate the error bounds from the $l_1$ norm with those from R\'enyi divergence, distinguishing between policies near the vertices and those in the middle of the policy space, to determine the lower and upper bounds for the required sample sizes.
- Abstract(参考訳): 政策探索手法は強化学習において重要であり、継続的な状態反応と部分的に観察可能な問題に対処するための枠組みを提供する。
しかし、広大な政策空間を探索する複雑さは、大きな非効率をもたらす可能性がある。
政策圧縮による政策空間の削減は、学習プロセスを加速するための強力で報酬のないアプローチとして現れます。
この手法は方針空間をより小さく代表的な集合に凝縮し、元の効果のほとんどを維持している。
本研究は,この圧縮された集合を正確に学習するために必要なサンプルサイズを決定することに焦点を当てる。
我々は、真のポリシー分布と推定されたポリシー分布の類似性を測定するためにR\enyi divergenceを使用し、良い近似のための誤差境界を確立する。
解析を簡略化するために、モデルベースおよびモデルフリー設定の両方のサンプルサイズ要件を決定するために、$l_1$ normを使用します。
最後に、誤差境界を$l_1$ノルムとR\'enyiの発散と相関させ、頂点付近のポリシーとポリシー空間の中央のポリシーを区別し、必要なサンプルサイズの下限と上限を決定する。
関連論文リスト
- Policy Gradient with Active Importance Sampling [55.112959067035916]
政策勾配法(PG法)はISの利点を大いに生かし、以前に収集したサンプルを効果的に再利用することができる。
しかし、ISは歴史的サンプルを再重み付けするための受動的ツールとしてRLに採用されている。
我々は、政策勾配のばらつきを減らすために、サンプルを収集する最良の行動ポリシーを模索する。
論文 参考訳(メタデータ) (2024-05-09T09:08:09Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Off-Policy Evaluation for Large Action Spaces via Policy Convolution [60.6953713877886]
ポリシ・コンボリューション(Policy Convolution)のファミリーは、アクション内の潜在構造を使用して、ログとターゲットポリシを戦略的に畳み込みます。
合成およびベンチマークデータセットの実験では、PCを使用する場合の平均二乗誤差(MSE)が顕著に改善されている。
論文 参考訳(メタデータ) (2023-10-24T01:00:01Z) - Bi-Level Offline Policy Optimization with Limited Exploration [1.8130068086063336]
我々は、固定された事前コンパイルされたデータセットに基づいて良いポリシーを学習しようとするオフライン強化学習(RL)について研究する。
ポリシー(上層)と値関数(下層)の階層的相互作用をモデル化する2レベル構造化ポリシー最適化アルゴリズムを提案する。
我々は、オフラインRLのための合成、ベンチマーク、実世界のデータセットを混合して評価し、最先端の手法と競合することを示す。
論文 参考訳(メタデータ) (2023-10-10T02:45:50Z) - Wasserstein Distributionally Robust Policy Evaluation and Learning for
Contextual Bandits [18.982448033389588]
オフ政治評価と学習は、与えられた政策を評価し、環境と直接対話することなくオフラインデータから最適な政策を学ぶことに関するものである。
学習と実行における異なる環境の影響を考慮するため,分散ロバスト最適化法(DRO)が開発されている。
代わりにワッサーシュタイン距離を用いた新しいDRO手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T20:21:46Z) - High-probability sample complexities for policy evaluation with linear function approximation [88.87036653258977]
本研究では,2つの広く利用されている政策評価アルゴリズムに対して,最適線形係数の予め定義された推定誤差を保証するために必要なサンプル複素量について検討する。
高確率収束保証に縛られた最初のサンプル複雑性を確立し、許容レベルへの最適依存を実現する。
論文 参考訳(メタデータ) (2023-05-30T12:58:39Z) - Reward-Free Policy Space Compression for Reinforcement Learning [39.04317877999891]
強化学習では,環境と相互作用するエージェントの潜在的な振る舞いを無限のポリシーにエンコードする。
我々は、政策空間の報酬のない圧縮を、代表政策の有限集合に求めている。
政策空間のこの圧縮は集合被覆問題として定式化できることを示し、本質的にNPハードである。
論文 参考訳(メタデータ) (2022-02-22T18:11:57Z) - Minimax Off-Policy Evaluation for Multi-Armed Bandits [58.7013651350436]
有界報酬を用いたマルチアームバンディットモデルにおけるオフポリシー評価の問題点について検討する。
3つの設定でミニマックスレート・オプティマティックな手順を開発。
論文 参考訳(メタデータ) (2021-01-19T18:55:29Z) - Policy Optimization as Online Learning with Mediator Feedback [46.845765216238135]
ポリシー最適化(PO)は、継続的制御タスクに対処するための広く使われているアプローチである。
本稿では、政策分野におけるオンライン学習問題としてpoを枠組みとする仲介者フィードバックの概念を紹介する。
本稿では,再帰的最小化のために,RIST (Multiple Importance Smpling with Truncation) を用いたアルゴリズム RANDomized-Exploration Policy Optimization を提案する。
論文 参考訳(メタデータ) (2020-12-15T11:34:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。