High throughput screening with machine learning
- URL: http://arxiv.org/abs/2012.08275v1
- Date: Tue, 15 Dec 2020 13:19:03 GMT
- Title: High throughput screening with machine learning
- Authors: Oleksandr Gurbych, Maksym Druchok, Dzvenymyra Yarish, Sofiya Garkot
- Abstract summary: This study assesses the efficiency of several popular machine learning approaches in the prediction of molecular binding affinity.
The models were trained to predict binding affinities in terms of inhibition constants $K_i$ for pairs of proteins and small organic molecules.
- Score: 18.152525914196993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study assesses the efficiency of several popular machine learning
approaches in the prediction of molecular binding affinity: CatBoost, Graph
Attention Neural Network, and Bidirectional Encoder Representations from
Transformers. The models were trained to predict binding affinities in terms of
inhibition constants $K_i$ for pairs of proteins and small organic molecules.
First two approaches use thoroughly selected physico-chemical features, while
the third one is based on textual molecular representations - it is one of the
first attempts to apply Transformer-based predictors for the binding affinity.
We also discuss the visualization of attention layers within the Transformer
approach in order to highlight the molecular sites responsible for
interactions. All approaches are free from atomic spatial coordinates thus
avoiding bias from known structures and being able to generalize for compounds
with unknown conformations. The achieved accuracy for all suggested approaches
prove their potential in high throughput screening.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Binding Affinity Prediction: From Conventional to Machine Learning-Based Approaches [6.910316688468948]
We have observed a rising trend in the use of traditional machine learning and deep learning models for predicting binding affinity.
While prediction results are constantly improving, we also identify several open questions and potential directions that remain unexplored in the field.
This paper could serve as an excellent starting point for machine learning researchers who wish to engage in the study of binding affinity.
arXiv Detail & Related papers (2024-09-30T03:40:49Z) - Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
Mutagenicity is a concern due to its association with genetic mutations which can result in a variety of negative consequences.
In this work, we introduce a novel stacked ensemble based mutagenicity prediction model.
arXiv Detail & Related papers (2024-09-03T09:14:21Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - HD-Bind: Encoding of Molecular Structure with Low Precision,
Hyperdimensional Binary Representations [3.3934198248179026]
Hyperdimensional Computing (HDC) is a proposed learning paradigm that is able to leverage low-precision binary vector arithmetic.
We show that HDC-based inference methods are as much as 90 times more efficient than more complex representative machine learning methods.
arXiv Detail & Related papers (2023-03-27T21:21:46Z) - Geometric Transformer for End-to-End Molecule Properties Prediction [92.28929858529679]
We introduce a Transformer-based architecture for molecule property prediction, which is able to capture the geometry of the molecule.
We modify the classical positional encoder by an initial encoding of the molecule geometry, as well as a learned gated self-attention mechanism.
arXiv Detail & Related papers (2021-10-26T14:14:40Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
We propose a dual-branched neural network for molecular property prediction based on message-passing framework.
Our model learns heterogeneous molecular features with different scales, which are trained flexibly according to each prediction target.
arXiv Detail & Related papers (2021-06-14T10:00:39Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.