Generating new coordination compounds via multireference simulations, genetic algorithms and machine learning: the case of Co(II) molecular magnets
- URL: http://arxiv.org/abs/2504.13749v1
- Date: Fri, 18 Apr 2025 15:33:48 GMT
- Title: Generating new coordination compounds via multireference simulations, genetic algorithms and machine learning: the case of Co(II) molecular magnets
- Authors: Lion Frangoulis, Zahra Khatibi, Lorenzo A. Mariano, Alessandro Lunghi,
- Abstract summary: We propose a computational strategy able to accelerate the discovery of new coordination compounds with desired electronic and magnetic properties.<n>Our approach is based on a combination of high- throughput ab initio methods, genetic algorithms and machine learning.<n>We showcase the power of this approach by automatically generating new Co(II) mononuclear coordination compounds with record magnetic properties in a fraction of the time required by either experiments or brute-force ab initio approaches.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The design of coordination compounds with target properties often requires years of continuous feedback loop between theory, simulations and experiments. In the case of magnetic molecules, this conventional strategy has indeed led to the breakthrough of single-molecule magnets with working temperatures above nitrogen's boiling point, but at significant costs in terms of resources and time. Here, we propose a computational strategy able to accelerate the discovery of new coordination compounds with desired electronic and magnetic properties. Our approach is based on a combination of high-throughput multireference ab initio methods, genetic algorithms and machine learning. While genetic algorithms allow for an intelligent sampling of the vast chemical space available, machine learning reduces the computational cost by pre-screening molecular properties in advance of their accurate and automated multireference ab initio characterization. Importantly, the presented framework is able to generate novel organic ligands and explore chemical motifs beyond those available in pre-existing structural databases. We showcase the power of this approach by automatically generating new Co(II) mononuclear coordination compounds with record magnetic properties in a fraction of the time required by either experiments or brute-force ab initio approaches
Related papers
- Physics-informed active learning for accelerating quantum chemical simulations [10.56535364437456]
We introduce the end-to-end AL for constructing robust data-efficient potentials in quantum chemical simulations.
Our protocol is based on the physics-informed sampling of training points, automatic selection of initial data, uncertainty quantification, and convergence monitoring.
These investigations took us days instead of weeks of pure quantum chemical calculations on a high-performance computing cluster.
arXiv Detail & Related papers (2024-04-18T00:17:01Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - HD-Bind: Encoding of Molecular Structure with Low Precision,
Hyperdimensional Binary Representations [3.3934198248179026]
Hyperdimensional Computing (HDC) is a proposed learning paradigm that is able to leverage low-precision binary vector arithmetic.
We show that HDC-based inference methods are as much as 90 times more efficient than more complex representative machine learning methods.
arXiv Detail & Related papers (2023-03-27T21:21:46Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Discovery of structure-property relations for molecules via
hypothesis-driven active learning over the chemical space [0.0]
We introduce a novel approach for the active learning over the chemical spaces based on hypothesis learning.
We construct the hypotheses on the possible relationships between structures and functionalities of interest based on a small subset of data.
This approach combines the elements from the symbolic regression methods such as SISSO and active learning into a single framework.
arXiv Detail & Related papers (2023-01-06T14:22:43Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
We propose a novel methodology for transferring knowledge obtained from simple molecular systems to a more complex one.
We focus on the classification of high and low free-energy states.
Our results show a remarkable AUC of 0.92 for transfer learning from tri-alanine to the deca-alanine system.
arXiv Detail & Related papers (2022-05-06T16:21:00Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - ChemoVerse: Manifold traversal of latent spaces for novel molecule
discovery [0.7742297876120561]
It is essential to identify molecular structures with the desired chemical properties.
Recent advances in generative models using neural networks and machine learning are being widely used to design virtual libraries of drug-like compounds.
arXiv Detail & Related papers (2020-09-29T12:11:40Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.