Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer
- URL: http://arxiv.org/abs/2110.07347v2
- Date: Fri, 15 Oct 2021 15:21:48 GMT
- Title: Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer
- Authors: Siyuan Liu, Yusong Wang, Tong Wang, Yifan Deng, Liang He, Bin Shao,
Jian Yin, Nanning Zheng, Tie-Yan Liu
- Abstract summary: We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
- Score: 98.8319016075089
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The identification of active binding drugs for target proteins (termed as
drug-target interaction prediction) is the key challenge in virtual screening,
which plays an essential role in drug discovery. Although recent deep
learning-based approaches achieved better performance than molecular docking,
existing models often neglect certain aspects of the intermolecular
information, hindering the performance of prediction. We recognize this problem
and propose a novel approach named Intermolecular Graph Transformer (IGT) that
employs a dedicated attention mechanism to model intermolecular information
with a three-way Transformer-based architecture. IGT outperforms
state-of-the-art approaches by 9.1% and 20.5% over the second best for binding
activity and binding pose prediction respectively, and shows superior
generalization ability to unseen receptor proteins. Furthermore, IGT exhibits
promising drug screening ability against SARS-CoV-2 by identifying 83.1% active
drugs that have been validated by wet-lab experiments with near-native
predicted binding poses.
Related papers
- FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - FragXsiteDTI: Revealing Responsible Segments in Drug-Target Interaction
with Transformer-Driven Interpretation [0.09236074230806578]
Drug-Target Interaction (DTI) prediction is vital for drug discovery, yet challenges persist in achieving model interpretability and optimizing performance.
We propose a novel transformer-based model, FragXsiteDTI, that aims to address these challenges in DTI prediction.
FragXsiteDTI is the first DTI model to simultaneously leverage drug molecule fragments and protein pockets.
arXiv Detail & Related papers (2023-11-04T04:57:13Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - Drug-target affinity prediction method based on consistent expression of
heterogeneous data [0.0]
We propose a method for predicting drug-target binding affinity using deep learning models.
The proposed model demonstrates its accuracy and effectiveness in predicting drug-target binding affinity on the DAVIS and KIBA datasets.
arXiv Detail & Related papers (2022-11-13T02:58:03Z) - Associative Learning Mechanism for Drug-Target Interaction Prediction [6.107658437700639]
Drug-target affinity (DTA) represents the strength of drug-target interaction (DTI)
Traditional methods lack the interpretability of the DTA prediction process.
This paper proposes a DTA prediction method with interactive learning and an autoencoder mechanism.
arXiv Detail & Related papers (2022-05-24T14:25:28Z) - Benchmarking Deep Graph Generative Models for Optimizing New Drug
Molecules for COVID-19 [11.853524110656991]
Design of new drug compounds with target properties is a key area of research in generative modeling.
We present a small drug molecule design pipeline based on graph-generative models and a comparison study of two state-of-the-art graph generative models for designing COVID-19 targeted drug candidates.
arXiv Detail & Related papers (2021-02-09T17:49:26Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
Drug target interaction (DTI) prediction is a foundational task for in silico drug discovery.
Recent years have witnessed promising progress for deep learning in DTI predictions.
We propose a Molecular Interaction Transformer (TransMol) to address these limitations.
arXiv Detail & Related papers (2020-04-23T18:56:04Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.