Practical Auto-Calibration for Spatial Scene-Understanding from
Crowdsourced Dashcamera Videos
- URL: http://arxiv.org/abs/2012.08375v1
- Date: Tue, 15 Dec 2020 15:38:17 GMT
- Title: Practical Auto-Calibration for Spatial Scene-Understanding from
Crowdsourced Dashcamera Videos
- Authors: Hemang Chawla, Matti Jukola, Shabbir Marzban, Elahe Arani and Bahram
Zonooz
- Abstract summary: We propose a system for practical monocular onboard camera auto-calibration from crowdsourced videos.
We show the effectiveness of our proposed system on the KITTI raw, Oxford RobotCar, and the crowdsourced D$2$-City datasets.
- Score: 1.0499611180329804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial scene-understanding, including dense depth and ego-motion estimation,
is an important problem in computer vision for autonomous vehicles and advanced
driver assistance systems. Thus, it is beneficial to design perception modules
that can utilize crowdsourced videos collected from arbitrary vehicular onboard
or dashboard cameras. However, the intrinsic parameters corresponding to such
cameras are often unknown or change over time. Typical manual calibration
approaches require objects such as a chessboard or additional scene-specific
information. On the other hand, automatic camera calibration does not have such
requirements. Yet, the automatic calibration of dashboard cameras is
challenging as forward and planar navigation results in critical motion
sequences with reconstruction ambiguities. Structure reconstruction of complete
visual-sequences that may contain tens of thousands of images is also
computationally untenable. Here, we propose a system for practical monocular
onboard camera auto-calibration from crowdsourced videos. We show the
effectiveness of our proposed system on the KITTI raw, Oxford RobotCar, and the
crowdsourced D$^2$-City datasets in varying conditions. Finally, we demonstrate
its application for accurate monocular dense depth and ego-motion estimation on
uncalibrated videos.
Related papers
- UniDrive: Towards Universal Driving Perception Across Camera Configurations [38.40168936403638]
3D perception aims to infer 3D information from 2D images based on 3D-2D projection.
Generalizing across camera configurations is important for deploying autonomous driving models on different car models.
We present UniDrive, a novel framework for vision-centric autonomous driving to achieve universal perception across camera configurations.
arXiv Detail & Related papers (2024-10-17T17:59:59Z) - KRONC: Keypoint-based Robust Camera Optimization for 3D Car Reconstruction [58.04846444985808]
This paper introduces KRONC, a novel approach aimed at inferring view poses by leveraging prior knowledge about the object to reconstruct and its representation through semantic keypoints.
With a focus on vehicle scenes, KRONC is able to estimate the position of the views as a solution to a light optimization problem targeting the convergence of keypoints' back-projections to a singular point.
arXiv Detail & Related papers (2024-09-09T08:08:05Z) - Pedestrian detection with high-resolution event camera [0.0]
Event cameras (DVS) are a potentially interesting technology to address the above mentioned problems.
In this paper, we compare two methods of processing event data by means of deep learning for the task of pedestrian detection.
We used a representation in the form of video frames, convolutional neural networks and asynchronous sparse convolutional neural networks.
arXiv Detail & Related papers (2023-05-29T10:57:59Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
Camera calibration involves estimating camera parameters to infer geometric features from captured sequences.
Recent efforts show that learning-based solutions have the potential to be used in place of the repeatability works of manual calibrations.
arXiv Detail & Related papers (2023-03-19T04:00:05Z) - Extrinsic Camera Calibration with Semantic Segmentation [60.330549990863624]
We present an extrinsic camera calibration approach that automatizes the parameter estimation by utilizing semantic segmentation information.
Our approach relies on a coarse initial measurement of the camera pose and builds on lidar sensors mounted on a vehicle.
We evaluate our method on simulated and real-world data to demonstrate low error measurements in the calibration results.
arXiv Detail & Related papers (2022-08-08T07:25:03Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
We propose a SurroundDepth method to incorporate the information from multiple surrounding views to predict depth maps across cameras.
Specifically, we employ a joint network to process all the surrounding views and propose a cross-view transformer to effectively fuse the information from multiple views.
In experiments, our method achieves the state-of-the-art performance on the challenging multi-camera depth estimation datasets.
arXiv Detail & Related papers (2022-04-07T17:58:47Z) - Self-Supervised Camera Self-Calibration from Video [34.35533943247917]
We propose a learning algorithm to regress per-sequence calibration parameters using an efficient family of general camera models.
Our procedure achieves self-calibration results with sub-pixel reprojection error, outperforming other learning-based methods.
arXiv Detail & Related papers (2021-12-06T19:42:05Z) - SVDistNet: Self-Supervised Near-Field Distance Estimation on Surround
View Fisheye Cameras [30.480562747903186]
A 360deg perception of scene geometry is essential for automated driving, notably for parking and urban driving scenarios.
We present novel camera-geometry adaptive multi-scale convolutions which utilize the camera parameters as a conditional input.
We evaluate our approach on the Fisheye WoodScape surround-view dataset, significantly improving over previous approaches.
arXiv Detail & Related papers (2021-04-09T15:20:20Z) - OmniDet: Surround View Cameras based Multi-task Visual Perception
Network for Autonomous Driving [10.3540046389057]
This work presents a multi-task visual perception network on unrectified fisheye images.
It consists of six primary tasks necessary for an autonomous driving system.
We demonstrate that the jointly trained model performs better than the respective single task versions.
arXiv Detail & Related papers (2021-02-15T10:46:24Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z) - Depth Sensing Beyond LiDAR Range [84.19507822574568]
We propose a novel three-camera system that utilizes small field of view cameras.
Our system, along with our novel algorithm for computing metric depth, does not require full pre-calibration.
It can output dense depth maps with practically acceptable accuracy for scenes and objects at long distances.
arXiv Detail & Related papers (2020-04-07T00:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.