KRONC: Keypoint-based Robust Camera Optimization for 3D Car Reconstruction
- URL: http://arxiv.org/abs/2409.05407v1
- Date: Mon, 9 Sep 2024 08:08:05 GMT
- Title: KRONC: Keypoint-based Robust Camera Optimization for 3D Car Reconstruction
- Authors: Davide Di Nucci, Alessandro Simoni, Matteo Tomei, Luca Ciuffreda, Roberto Vezzani, Rita Cucchiara,
- Abstract summary: This paper introduces KRONC, a novel approach aimed at inferring view poses by leveraging prior knowledge about the object to reconstruct and its representation through semantic keypoints.
With a focus on vehicle scenes, KRONC is able to estimate the position of the views as a solution to a light optimization problem targeting the convergence of keypoints' back-projections to a singular point.
- Score: 58.04846444985808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The three-dimensional representation of objects or scenes starting from a set of images has been a widely discussed topic for years and has gained additional attention after the diffusion of NeRF-based approaches. However, an underestimated prerequisite is the knowledge of camera poses or, more specifically, the estimation of the extrinsic calibration parameters. Although excellent general-purpose Structure-from-Motion methods are available as a pre-processing step, their computational load is high and they require a lot of frames to guarantee sufficient overlapping among the views. This paper introduces KRONC, a novel approach aimed at inferring view poses by leveraging prior knowledge about the object to reconstruct and its representation through semantic keypoints. With a focus on vehicle scenes, KRONC is able to estimate the position of the views as a solution to a light optimization problem targeting the convergence of keypoints' back-projections to a singular point. To validate the method, a specific dataset of real-world car scenes has been collected. Experiments confirm KRONC's ability to generate excellent estimates of camera poses starting from very coarse initialization. Results are comparable with Structure-from-Motion methods with huge savings in computation. Code and data will be made publicly available.
Related papers
- Range-Agnostic Multi-View Depth Estimation With Keyframe Selection [33.99466211478322]
Methods for 3D reconstruction from posed frames require prior knowledge about the scene metric range.
RAMDepth is an efficient and purely 2D framework that reverses the depth estimation and matching steps order.
arXiv Detail & Related papers (2024-01-25T18:59:42Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
We focus on object pose estimation.
Our approach relies on three pieces of information: multiple views of the object, the camera's parameters at those viewpoints, and 3D CAD models of objects.
We show that the estimated object pose results in 99.65% grasp accuracy with the ground truth grasp candidates.
arXiv Detail & Related papers (2023-11-14T14:27:53Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - MV-ROPE: Multi-view Constraints for Robust Category-level Object Pose and Size Estimation [23.615122326731115]
We propose a novel solution that makes use of RGB video streams.
Our framework consists of three modules: a scale-aware monocular dense SLAM solution, a lightweight object pose predictor, and an object-level pose graph.
Our experimental results demonstrate that when utilizing public dataset sequences with high-quality depth information, the proposed method exhibits comparable performance to state-of-the-art RGB-D methods.
arXiv Detail & Related papers (2023-08-17T08:29:54Z) - CarPatch: A Synthetic Benchmark for Radiance Field Evaluation on Vehicle
Components [77.33782775860028]
We introduce CarPatch, a novel synthetic benchmark of vehicles.
In addition to a set of images annotated with their intrinsic and extrinsic camera parameters, the corresponding depth maps and semantic segmentation masks have been generated for each view.
Global and part-based metrics have been defined and used to evaluate, compare, and better characterize some state-of-the-art techniques.
arXiv Detail & Related papers (2023-07-24T11:59:07Z) - RelPose: Predicting Probabilistic Relative Rotation for Single Objects
in the Wild [73.1276968007689]
We describe a data-driven method for inferring the camera viewpoints given multiple images of an arbitrary object.
We show that our approach outperforms state-of-the-art SfM and SLAM methods given sparse images on both seen and unseen categories.
arXiv Detail & Related papers (2022-08-11T17:59:59Z) - FvOR: Robust Joint Shape and Pose Optimization for Few-view Object
Reconstruction [37.81077373162092]
Reconstructing an accurate 3D object model from a few image observations remains a challenging problem in computer vision.
We present FvOR, a learning-based object reconstruction method that predicts accurate 3D models given a few images with noisy input poses.
arXiv Detail & Related papers (2022-05-16T15:39:27Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Single View Metrology in the Wild [94.7005246862618]
We present a novel approach to single view metrology that can recover the absolute scale of a scene represented by 3D heights of objects or camera height above the ground.
Our method relies on data-driven priors learned by a deep network specifically designed to imbibe weakly supervised constraints from the interplay of the unknown camera with 3D entities such as object heights.
We demonstrate state-of-the-art qualitative and quantitative results on several datasets as well as applications including virtual object insertion.
arXiv Detail & Related papers (2020-07-18T22:31:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.