論文の概要: SPOC learner's final grade prediction based on a novel sampling batch
normalization embedded neural network method
- arxiv url: http://arxiv.org/abs/2012.08408v1
- Date: Tue, 15 Dec 2020 16:36:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 05:20:29.887216
- Title: SPOC learner's final grade prediction based on a novel sampling batch
normalization embedded neural network method
- Title(参考訳): 新しいサンプリングバッチ正規化埋め込みニューラルネットワーク法によるspoc学習者の最終次数予測
- Authors: Zhuonan Liang, Ziheng Liu, Huaze Shi, Yunlong Chen, Yanbin Cai, Yating
Liang, Yafan Feng, Yuqing Yang, Jing Zhang, Peng Fu
- Abstract要約: スモールプライベートオンラインコース(SPOC)の学習者の最終段階は、予測モデルのトレーニングをハンディキャップする一般的に真剣に不均衡です。
そこで本論文では,サンプリングバッチ正規化埋め込みディープニューラルネットワーク(SBNEDNN)法を開発した。
- 参考スコア(独自算出の注目度): 5.853165192421539
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent years have witnessed the rapid growth of Small Private Online Courses
(SPOC) which is able to highly customized and personalized to adapt variable
educational requests, in which machine learning techniques are explored to
summarize and predict the learner's performance, mostly focus on the final
grade. However, the problem is that the final grade of learners on SPOC is
generally seriously imbalance which handicaps the training of prediction model.
To solve this problem, a sampling batch normalization embedded deep neural
network (SBNEDNN) method is developed in this paper. First, a combined
indicator is defined to measure the distribution of the data, then a rule is
established to guide the sampling process. Second, the batch normalization (BN)
modified layers are embedded into full connected neural network to solve the
data imbalanced problem. Experimental results with other three deep learning
methods demonstrates the superiority of the proposed method.
- Abstract(参考訳): 近年では、学習者の成績を要約し予測するために機械学習技術が研究され、主に最終学年に集中する、可変的な教育要求に高度にカスタマイズし、パーソナライズすることができるs small private online courses (spoc)が急速に成長している。
しかし,SPOCにおける学習者の最終段階は,予測モデルの訓練を手作業で行う場合,概して深刻な不均衡である。
そこで本研究では,サンプリングバッチ正規化組み込みディープニューラルネットワーク(SBNEDNN)法を開発した。
まず、データ分布を測定するために結合指標を定義し、その後、サンプリングプロセスを導くためのルールが確立される。
次に、バッチ正規化(bn)修飾層を完全連結ニューラルネットワークに組み込み、データ不均衡問題を解決する。
他の3つのディープラーニング手法による実験結果は,提案手法の優位性を示している。
関連論文リスト
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - A Rate-Distortion View of Uncertainty Quantification [36.85921945174863]
教師付き学習では、入力がトレーニングデータに近接していることを理解することは、モデルが信頼できる予測に達する十分な証拠を持っているかどうかを判断するのに役立つ。
本稿では,この特性でディープニューラルネットワークを強化するための新しい手法であるDistance Aware Bottleneck (DAB)を紹介する。
論文 参考訳(メタデータ) (2024-06-16T01:33:22Z) - Variational Density Propagation Continual Learning [0.0]
現実世界にデプロイされるディープニューラルネットワーク(DNN)は、定期的にオフ・オブ・ディストリビューション(OoD)データの対象となっている。
本稿では,ベンチマーク連続学習データセットによってモデル化されたデータ分散ドリフトに適応するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-22T21:51:39Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
この研究は、低データ体制のための新しい教師なし事前学習ソリューションを提供する。
近年のPrompting技術の成功に触発されて,QEISモデルを強化した新しい事前学習手法を導入する。
実験結果から,本手法は3つのデータセット上でのいくつかのQEISモデルを大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-02-02T15:49:03Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Look beyond labels: Incorporating functional summary information in
Bayesian neural networks [11.874130244353253]
予測確率に関する要約情報を組み込むための簡単な手法を提案する。
利用可能な要約情報は、拡張データとして組み込まれ、ディリクレプロセスでモデル化される。
本稿では,タスクの難易度やクラス不均衡をモデルに示す方法について述べる。
論文 参考訳(メタデータ) (2022-07-04T07:06:45Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
我々は、より大きな確率関数のクラスに対する推論を行うことができるような、限界確率に対する新しい下界を導入する。
我々は、最後の層にガウス的プロセスを持つアーキテクチャを使用することで、このアプローチをニューラルネットワークに導入することに取り組んでいます。
論文 参考訳(メタデータ) (2021-06-14T15:40:51Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z) - Regularizing Class-wise Predictions via Self-knowledge Distillation [80.76254453115766]
類似サンプル間の予測分布を解析する新しい正規化法を提案する。
これにより、単一のネットワークの暗黒知識(すなわち誤った予測に関する知識)を規則化する。
画像分類タスクにおける実験結果から, 単純だが強力な手法が一般化能力を大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-03-31T06:03:51Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。