論文の概要: Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information
- arxiv url: http://arxiv.org/abs/2012.08604v1
- Date: Tue, 15 Dec 2020 20:41:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 05:32:01.009722
- Title: Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information
- Title(参考訳): マルチモーダルasyndgan: 個人情報を共有せずに、分散医療画像データから学ぶ
- Authors: Qi Chang, Zhennan Yan, Lohendran Baskaran, Hui Qu, Yikai Zhang, Tong
Zhang, Shaoting Zhang, and Dimitris N. Metaxas
- Abstract要約: プライバシーとセキュリティを守るために拡張可能で弾力性のある学習フレームワークを提案します。
提案するフレームワークは分散Asynchronized Discriminator Generative Adrial Networks (AsynDGAN) である。
- 参考スコア(独自算出の注目度): 55.866673486753115
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As deep learning technologies advance, increasingly more data is necessary to
generate general and robust models for various tasks. In the medical domain,
however, large-scale and multi-parties data training and analyses are
infeasible due to the privacy and data security concerns. In this paper, we
propose an extendable and elastic learning framework to preserve privacy and
security while enabling collaborative learning with efficient communication.
The proposed framework is named distributed Asynchronized Discriminator
Generative Adversarial Networks (AsynDGAN), which consists of a centralized
generator and multiple distributed discriminators. The advantages of our
proposed framework are five-fold: 1) the central generator could learn the real
data distribution from multiple datasets implicitly without sharing the image
data; 2) the framework is applicable for single-modality or multi-modality
data; 3) the learned generator can be used to synthesize samples for
down-stream learning tasks to achieve close-to-real performance as using actual
samples collected from multiple data centers; 4) the synthetic samples can also
be used to augment data or complete missing modalities for one single data
center; 5) the learning process is more efficient and requires lower bandwidth
than other distributed deep learning methods.
- Abstract(参考訳): ディープラーニング技術が進むにつれて、さまざまなタスクに対して汎用的で堅牢なモデルを生成するために、ますます多くのデータが必要になる。
しかし医療分野では,プライバシやデータのセキュリティ上の懸念から,大規模かつマルチパートのデータトレーニングや分析は不可能である。
本稿では,効率的なコミュニケーションによる協調学習を実現しつつ,プライバシとセキュリティを保ちつつ,拡張可能な弾性学習フレームワークを提案する。
提案するフレームワークは分散Asynchronized Discriminator Generative Adversarial Networks (AsynDGAN) と名付けられ,集中型ジェネレータと複数の分散ディスクリミネータで構成される。
The advantages of our proposed framework are five-fold: 1) the central generator could learn the real data distribution from multiple datasets implicitly without sharing the image data; 2) the framework is applicable for single-modality or multi-modality data; 3) the learned generator can be used to synthesize samples for down-stream learning tasks to achieve close-to-real performance as using actual samples collected from multiple data centers; 4) the synthetic samples can also be used to augment data or complete missing modalities for one single data center; 5) the learning process is more efficient and requires lower bandwidth than other distributed deep learning methods.
関連論文リスト
- Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
網膜疾患診断のための堅牢なディープラーニングモデルの開発には、トレーニングのためのかなりのデータセットが必要である。
より小さなデータセットで効果的に一般化する能力は、依然として永続的な課題である。
さまざまなデータソースを組み合わせて、パフォーマンスを改善し、新しいデータに一般化しています。
論文 参考訳(メタデータ) (2024-09-17T17:22:35Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - Beyond Just Vision: A Review on Self-Supervised Representation Learning
on Multimodal and Temporal Data [10.006890915441987]
自己教師型学習の普及は、従来のモデルがトレーニングに大量の十分な注釈付きデータを必要とするという事実によって引き起こされる。
モデルの差別的事前学習を通じて、訓練データの効率を向上させるための自己指導手法が導入された。
我々は,時間的データに対するマルチモーダルな自己教師型学習手法の総合的なレビューを初めて提供することを目的とする。
論文 参考訳(メタデータ) (2022-06-06T04:59:44Z) - A communication efficient distributed learning framework for smart
environments [0.4898659895355355]
本稿では,データ生成箇所にデータ分析を近づける分散学習フレームワークを提案する。
分散機械学習技術を使用することで、クラウドソリューションに匹敵するパフォーマンスを確保しながら、ネットワークオーバーヘッドを大幅に削減することができる。
分析はまた、ノード上のデータの特定の分布に基づいて、各分散学習アプローチがいつ好ましいかを示す。
論文 参考訳(メタデータ) (2021-09-27T13:44:34Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - Synthetic Learning: Learn From Distributed Asynchronized Discriminator
GAN Without Sharing Medical Image Data [21.725983290877753]
我々は分散非同期識別器GAN(AsynDGAN)という名前の分散GAN学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-29T21:05:49Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z) - Data-Free Knowledge Amalgamation via Group-Stack Dual-GAN [80.17705319689139]
複数のシングルタスク/マルチタスクの教師から,多タスクの学生ネットワークを構築するために,データフリーな知識アマルガメート戦略を提案する。
トレーニングデータを持たない提案手法は, フル教師付き手法と比較して, 驚くほど競争力のある結果が得られる。
論文 参考訳(メタデータ) (2020-03-20T03:20:52Z) - Evaluation Framework For Large-scale Federated Learning [10.127616622630514]
フェデレーテッド・ラーニングは、携帯電話などの分散型エッジデバイスが協調して共有予測モデルを学習できるようにするための機械学習環境として提案されている。
本稿では,データセットとモジュール型評価フレームワークを生成するためのアプローチからなる,大規模フェデレーション学習のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-03T15:12:13Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
我々は、トレーニングされたネットワークの将来の学習タスクのために、利用可能なデータの豊富さと関連するデータの欠如の間のギャップを埋める。
利用可能なデータは、元のトレーニングデータセットまたは関連するドメインデータセットの不均衡なサブセットである可能性があるため、代表サンプルを検索するために使用します。
関連ドメインからのデータを活用して最先端のパフォーマンスを実現することを実証する。
論文 参考訳(メタデータ) (2019-12-27T02:05:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。