論文の概要: Evaluation Framework For Large-scale Federated Learning
- arxiv url: http://arxiv.org/abs/2003.01575v2
- Date: Thu, 12 Mar 2020 02:14:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 22:24:52.540640
- Title: Evaluation Framework For Large-scale Federated Learning
- Title(参考訳): 大規模フェデレーション学習のための評価フレームワーク
- Authors: Lifeng Liu, Fengda Zhang, Jun Xiao, and Chao Wu
- Abstract要約: フェデレーテッド・ラーニングは、携帯電話などの分散型エッジデバイスが協調して共有予測モデルを学習できるようにするための機械学習環境として提案されている。
本稿では,データセットとモジュール型評価フレームワークを生成するためのアプローチからなる,大規模フェデレーション学習のためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.127616622630514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is proposed as a machine learning setting to enable
distributed edge devices, such as mobile phones, to collaboratively learn a
shared prediction model while keeping all the training data on device, which
can not only take full advantage of data distributed across millions of nodes
to train a good model but also protect data privacy. However, learning in
scenario above poses new challenges. In fact, data across a massive number of
unreliable devices is likely to be non-IID (identically and independently
distributed), which may make the performance of models trained by federated
learning unstable. In this paper, we introduce a framework designed for
large-scale federated learning which consists of approaches to generating
dataset and modular evaluation framework. Firstly, we construct a suite of
open-source non-IID datasets by providing three respects including covariate
shift, prior probability shift, and concept shift, which are grounded in
real-world assumptions. In addition, we design several rigorous evaluation
metrics including the number of network nodes, the size of datasets, the number
of communication rounds and communication resources etc. Finally, we present an
open-source benchmark for large-scale federated learning research.
- Abstract(参考訳): フェデレートラーニング(Federated Learning)は、携帯電話などの分散型エッジデバイスが、デバイス上ですべてのトレーニングデータを保持しながら、共有予測モデルを共同で学習可能にするための機械学習設定として提案されている。
しかし、上記のシナリオで学ぶことは、新しい課題をもたらす。
実際、膨大な数の信頼できないデバイスにまたがるデータは、非iid(識別および独立分散)であり、連合学習によって訓練されたモデルのパフォーマンスを不安定にする可能性がある。
本稿では,データセットとモジュール型評価フレームワークを生成するためのアプローチからなる,大規模フェデレーション学習のためのフレームワークを提案する。
まず,共変量シフト,事前確率シフト,概念シフトの3つの点を実世界の前提として,オープンソースの非IIDデータセット群を構築した。
さらに,ネットワークノード数,データセットサイズ,通信ラウンド数,通信リソースなど,いくつかの厳密な評価指標を設計した。
最後に,大規模フェデレート学習研究のためのオープンソースベンチマークを提案する。
関連論文リスト
- Self-Regulated Data-Free Knowledge Amalgamation for Text Classification [9.169836450935724]
そこで我々は,複数の教師モデルから学習できる軽量な学生ネットワークを構築した。
そこで本研究では,各教師に適したテキストデータを生成するモデリングフレームワークSTRATANETを提案する。
本手法は,ラベルやドメインの異なる3つのベンチマークテキスト分類データセットを用いて評価する。
論文 参考訳(メタデータ) (2024-06-16T21:13:30Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
本稿では,同じフェデレーションネットワークにおけるデータの統計的不均一性の問題に焦点をあてる。
FedAvg、FedProx、Federated Curvature(FedCurv)など、いくつかのフェデレートラーニングアルゴリズムがすでに提案されている。
この研究の副産物として、FLコミュニティからのさらなる比較を容易にするために使用したデータセットの非IIDバージョンをリリースします。
論文 参考訳(メタデータ) (2023-03-31T10:13:01Z) - SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT
Systems [15.796325306292134]
フェデレートラーニング(FL)は、データプライバシを維持しながら、エッジデバイス上で共有モデルの協調トレーニングを可能にする。
様々なパーソナライズされたアプローチが提案されているが、そのようなアプローチはデータ分散の根底にある変化に対処できない。
本稿では,ブロックチェーンとフェデレーション学習に基づく動的に最適化された個人深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-12T02:57:05Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information [55.866673486753115]
プライバシーとセキュリティを守るために拡張可能で弾力性のある学習フレームワークを提案します。
提案するフレームワークは分散Asynchronized Discriminator Generative Adrial Networks (AsynDGAN) である。
論文 参考訳(メタデータ) (2020-12-15T20:41:24Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
フェデレートされた学習は、プライバシ保護とセキュアな機械学習に対する潜在的なソリューションを提供する。
本稿では,第3次フェデレーション平均化プロトコル(T-FedAvg)を提案する。
その結果,提案したT-FedAvgは通信コストの低減に有効であり,非IIDデータの性能も若干向上できることがわかった。
論文 参考訳(メタデータ) (2020-03-07T11:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。