論文の概要: Sequential Attacks on Kalman Filter-based Forward Collision Warning
Systems
- arxiv url: http://arxiv.org/abs/2012.08704v1
- Date: Wed, 16 Dec 2020 02:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 03:06:36.401031
- Title: Sequential Attacks on Kalman Filter-based Forward Collision Warning
Systems
- Title(参考訳): カルマンフィルタを用いた前方衝突警報システムの逐次攻撃
- Authors: Yuzhe Ma, Jon Sharp, Ruizhe Wang, Earlence Fernandes, Xiaojin Zhu
- Abstract要約: 我々は,前向き衝突警報システムの一部として,カルマンフィルタ(KF)に対する敵対攻撃について検討した。
我々の攻撃目標は、KFに誤った状態推定を出力させることで、人間のブレーキ決定に悪影響を及ぼすことである。
我々は,kfに供給される量量を順次操作し,最適操作を計算するための新しいモデル予測制御(mpc)手法を提案する。
- 参考スコア(独自算出の注目度): 23.117910305213016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kalman Filter (KF) is widely used in various domains to perform sequential
learning or variable estimation. In the context of autonomous vehicles, KF
constitutes the core component of many Advanced Driver Assistance Systems
(ADAS), such as Forward Collision Warning (FCW). It tracks the states
(distance, velocity etc.) of relevant traffic objects based on sensor
measurements. The tracking output of KF is often fed into downstream logic to
produce alerts, which will then be used by human drivers to make driving
decisions in near-collision scenarios. In this paper, we study adversarial
attacks on KF as part of the more complex machine-human hybrid system of
Forward Collision Warning. Our attack goal is to negatively affect human
braking decisions by causing KF to output incorrect state estimations that lead
to false or delayed alerts. We accomplish this by sequentially manipulating
measure ments fed into the KF, and propose a novel Model Predictive Control
(MPC) approach to compute the optimal manipulation. Via experiments conducted
in a simulated driving environment, we show that the attacker is able to
successfully change FCW alert signals through planned manipulation over
measurements prior to the desired target time. These results demonstrate that
our attack can stealthily mislead a distracted human driver and cause vehicle
collisions.
- Abstract(参考訳): カルマンフィルタ(KF)は、逐次学習や変数推定を行うために様々な領域で広く使われている。
自動運転車の文脈では、KFは前方衝突警報(FCW)など多くの先進運転支援システム(ADAS)のコアコンポーネントを構成する。
状態(距離、速度など)を追跡する。
センサーの計測に基づく 関連する交通物体についてです
KFのトラッキング出力は、しばしば下流ロジックに入力され、警告を生成する。
本稿では,前方衝突警告のより複雑な機械・人間ハイブリッドシステムの一部として,kfに対する敵意攻撃について検討する。
我々の攻撃目標は、KFに誤った状態推定を出力させ、誤った警告や遅延を発生させることで、人間のブレーキ決定に悪影響を及ぼすことです。
我々は,kfに供給される量量を順次操作し,最適操作を計算するための新しいモデル予測制御(mpc)手法を提案する。
シミュレーション運転環境で行った実験により、攻撃者は所望の目標時間に先立って測定を予定する操作により、FCW警告信号を変更できることが判明した。
これらの結果は、我々の攻撃が人間のドライバーをひそかに誤解させ、車両の衝突を引き起こすことを実証している。
関連論文リスト
- Sensor Deprivation Attacks for Stealthy UAV Manipulation [51.9034385791934]
無人航空機は最先端の制御アルゴリズムを用いて自律的にタスクを実行する。
本稿では,マルチパートを提案する。
センサー分離攻撃 (Sensor Deprivation Attacks, SDA) - 極秘に影響を及ぼす攻撃。
センサーのリコンフィグレーションによる プロセス制御
論文 参考訳(メタデータ) (2024-10-14T23:03:58Z) - Detecting stealthy cyberattacks on adaptive cruise control vehicles: A
machine learning approach [5.036807309572884]
運転行動がわずかに変化しただけで、より汚い攻撃は、ネットワーク全体の混雑、燃料消費、さらにはクラッシュリスクさえも、容易に検出されずに増加させる可能性がある。
本稿では,車両制御コマンドの不正な操作,センサ計測に対する偽データ注入攻撃,DoS攻撃の3種類のサイバー攻撃に対するトラフィックモデルフレームワークを提案する。
車両軌跡データを用いた攻撃をリアルタイムに識別するために,GANに基づく新しい生成逆数ネットワーク(generative adversarial network, GAN)を用いた異常検出モデルを提案する。
論文 参考訳(メタデータ) (2023-10-26T01:22:10Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems [8.561553195784017]
本稿では,実行時認識攻撃下での深層ニューラルネットワークを用いたACCシステムのセキュリティ評価を行う。
攻撃を誘発する最も重要な時間を選択するための文脈認識戦略を提案する。
提案攻撃の有効性を,実車,公用運転データセット,現実的なシミュレーションプラットフォームを用いて評価した。
論文 参考訳(メタデータ) (2023-07-18T03:12:03Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
本研究では,視覚的観察と運転者の注意に対する人為的な文章記述の認識を効果的に活用し,モデルトレーニングを容易にする認知事故予測手法を提案する。
CAPは、注意テキスト〜ビジョンシフト融合モジュール、注意シーンコンテキスト転送モジュール、運転注意誘導事故予測モジュールによって構成される。
我々は,1,727件の事故ビデオと219万フレーム以上の大規模ベンチマークを構築した。
論文 参考訳(メタデータ) (2022-12-19T11:43:02Z) - Spatial-Temporal Anomaly Detection for Sensor Attacks in Autonomous
Vehicles [1.7188280334580195]
飛行時間(ToF)距離測定装置は、スプーフィング、トリガー、偽データインジェクション攻撃に対して脆弱である。
残差空間検出器と時間に基づく予測変化検出を組み込んだ時空間異常検出モデルtextitSTAnDSを提案する。
論文 参考訳(メタデータ) (2022-12-15T12:21:27Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - A Certifiable Security Patch for Object Tracking in Self-Driving Systems
via Historical Deviation Modeling [22.753164675538457]
自動運転車における物体追跡の安全性に関する最初の体系的研究について述べる。
我々は,KF(Kalman Filter)に基づくメインストリームマルチオブジェクトトラッカー(MOT)が,マルチセンサ融合機構が有効であっても安全でないことを証明した。
我々は、KFベースのMOTのための単純かつ効果的なセキュリティパッチを提案し、その中核は、KFの観測と予測に対する焦点のバランスをとるための適応戦略である。
論文 参考訳(メタデータ) (2022-07-18T12:30:24Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - An NCAP-like Safety Indicator for Self-Driving Cars [2.741266294612776]
本稿では,自動運転車の安全性を評価するメカニズムを提案する。
車両が敵と衝突することを避けるシナリオにおいて、車両の安全性を評価する。
セーフカミカゼ距離(Safe-Kamikaze Distance)と呼ばれる安全対策は、安全な敵の軌道と安全な軌道に近いカミカゼ軌道との平均的な類似性を計算する。
論文 参考訳(メタデータ) (2021-04-02T02:39:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。